Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(13)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37446253

RESUMO

Liquid biopsy and circulating tumor cell (CTC) screening has gained interest over the last two decades for detecting almost all solid malignancies. To date, the major limitation in terms of the applicability of CTC screening in daily clinical practice is the lack of reproducibility due to the high number of platforms available that use various technologies (e.g., label-dependent versus label-free detection). Only a few studies have compared different CTC platforms. The aim of this study was to compare the efficiency of four commercially available CTC platforms (Vortex (VTX-1), ClearCell FX, ISET, and Cellsearch) for the detection and identification of uveal melanoma cells (OMM 2.3 cell line). Tumor cells were seeded in RPMI medium and venous blood from healthy donors, and then processed similarly using these four platforms. Melan-A immunochemistry was performed to identify tumor cells, except when the Cellsearch device was used (automated identification). The mean overall recovery rates (with mean recovered cells) were 39.2% (19.92), 22.2% (11.31), 8.9% (4.85), and 1.1% (0.20) for the ISET, Vortex (VTX-1), ClearCell FX, and CellSearch platforms, respectively. Although paramount, the recovery rate is not sufficient to assess a CTC platform. Other parameters, such as the purpose for using a platform (diagnosis, genetics, drug sensitivity, or patient-derived xenograft models), reproducibility, purity, user-friendliness, cost-effectiveness, and ergonomics, should also be considered before they can be used in daily clinical practice and are discussed in this article.


Assuntos
Melanoma , Células Neoplásicas Circulantes , Neoplasias Uveais , Humanos , Células Neoplásicas Circulantes/patologia , Reprodutibilidade dos Testes , Melanoma/patologia , Neoplasias Uveais/diagnóstico , Neoplasias Uveais/patologia , Biomarcadores Tumorais/metabolismo
2.
Cancers (Basel) ; 12(4)2020 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-32294880

RESUMO

BACKGROUND: Assessment of actionable EGFR mutations is mandatory for treatment-naïve advanced or metastatic non-squamous lung carcinoma (NSLC), but the results need to be obtained in less than 10 working days. For rapid EGFR testing, an EGFR-specific polymerase chain reaction (PCR) assay is an alternative and simple approach compared to next generation sequencing (NGS). Here, we describe how a rapid EGFR-specific PCR assay can be implemented in a single laboratory center (LPCE, Nice, France) as reflex testing in treatment-naïve NSLC. METHODS: A total of 901 biopsies from NSLC with more than 10% of tumor cells were prospectively and consecutively evaluated for EGFR mutation status between November 2017 and December 2019 using the Idylla system (Biocartis NV, Mechelen, Belgium). NGS was performed for nonsmokers with NSLC wild type for EGFR, ALK, ROS1, and BRAF and with less than 50% PD-L1 positive cells using the Hotspot panel (Thermo Fisher Scientific, Waltham, MA, USA). RESULTS: Results were obtained from 889/901 (97%) biopsies with detection of EGFR mutations in 114/889 (13%) cases using the Idylla system. Among the 562 EGFR wild type tumors identified with Idylla, NGS detected one actionable and one nonactionable EGFR mutation. CONCLUSIONS: Rapid and targeted assessment of EGFR mutations in treatment-naïve NSLC can be implemented in routine clinical practice. However, it is mandatory to integrate this approach into a molecular algorithm that allows evaluation of potentially actionable genomic alterations other than EGFR mutations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA