RESUMO
In magnetic resonance imaging (MRI), the perception of substandard image quality may prompt repetition of the respective image acquisition protocol. Subsequently selecting the preferred high-quality image data from a series of acquisitions can be challenging. An automated workflow may facilitate and improve this selection. We therefore aimed to investigate the applicability of an automated image quality assessment for the prediction of the subjectively preferred image acquisition. Our analysis included data from 11,347 participants with whole-body MRI examinations performed as part of the ongoing prospective multi-center German National Cohort (NAKO) study. Trained radiologic technologists repeated any of the twelve examination protocols due to induced setup errors and/or subjectively unsatisfactory image quality and chose a preferred acquisition from the resultant series. Up to 11 quantitative image quality parameters were automatically derived from all acquisitions. Regularized regression and standard estimates of diagnostic accuracy were calculated. Controlling for setup variations in 2342 series of two or more acquisitions, technologists preferred the repetition over the initial acquisition in 1116 of 1396 series in which the initial setup was retained (79.9%, range across protocols: 73-100%). Image quality parameters then commonly showed statistically significant differences between chosen and discarded acquisitions. In regularized regression across all protocols, 'structured noise maximum' was the strongest predictor for the technologists' choice, followed by 'N/2 ghosting average'. Combinations of the automatically derived parameters provided an area under the ROC curve between 0.51 and 0.74 for the prediction of the technologists' choice. It is concluded that automated image quality assessment can, despite considerable performance differences between protocols and anatomical regions, contribute substantially to identifying the subjective preference in a series of MRI acquisitions and thus provide effective decision support to readers.
Assuntos
Imageamento por Ressonância Magnética , Humanos , Estudos de Coortes , Estudos Prospectivos , Imageamento por Ressonância Magnética/métodos , Curva ROC , Estudos LongitudinaisRESUMO
While access to a laboratory MRI system is ideal for teaching MR physics as well as many aspects of signal processing, providing multiple MRI scanners can be prohibitively expensive for educational settings. To address this need, we developed a small, low-cost, open-interface tabletop MRI scanner for academic use. We constructed and tested 20 of these scanners for parallel use by teams of 2-3 students in a teaching laboratory. With simplification and down-scaling to a 1â¯cm FOV, fully-functional scanners were achieved within a budget of $10,000 USD each. The design was successful for teaching MR principles and basic signal processing skills and serves as an accessible testbed for more advanced MR research projects. Customizable GUIs, pulse sequences, and reconstruction code accessible to the students facilitated tailoring the scanner to the needs of laboratory exercise. The scanners have been used by >800 students in 6 different courses and all designs, schematics, sequences, GUIs, and reconstruction code is open-source.
Assuntos
Diagnóstico por Imagem , Imageamento por Ressonância Magnética/instrumentação , Diagnóstico por Imagem/economia , Campos Eletromagnéticos , Desenho de Equipamento , Imageamento por Ressonância Magnética/economia , Imagens de Fantasmas , Pesquisa , Processamento de Sinais Assistido por Computador , Estudantes , EnsinoRESUMO
PURPOSE: Achieving higher spatial resolution and improved brain coverage while mitigating in-plane susceptibility artifacts in the assessment of perfusion parameters, such as cerebral blood volume, in echo planar imaging (EPI)-based dynamic susceptibility contrast weighted cerebral perfusion measurements. METHODS: PEAK-EPI, an EPI sequence with interleaved readout trajectories and three different strategies for autocalibration-signal acquisition (inplace, dynamic extra and extra) is presented. Performance of each approach is analyzed in vivo based on flip angle variation induced dynamics, assessing temporal fidelity, temporal SNR and g-factors. All approaches are compared with conventional GRAPPA reconstructions. PEAK-EPI with inplace autocalibration-signal at R = 5 is then compared with the standard clinical EPI protocol in six patients, using two half-dose dynamic susceptibility contrast weighted cerebral perfusion measurements per subject. RESULTS: PEAK-EPI acquisition facilitates a substantial increase of spatial resolution at a higher number of slices per TR and provides improved SNR compared to conventional GRAPPA. High dependency of the resulting reconstruction quality on the type of autocalibration-signal acquisition is observed. PEAK-EPI with inplace autocalibration-signal achieves high temporal fidelity and initial feasibility is shown. CONCLUSION: The obtained high resolution cerebral blood volume maps reveal more detailed information than in corresponding standard EPI measurements and facilitate detailed delineation of tumorous tissue. Magn Reson Med 77:2153-2166, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Assuntos
Determinação do Volume Sanguíneo/métodos , Volume Sanguíneo , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/fisiopatologia , Imagem Ecoplanar/métodos , Aumento da Imagem/métodos , Angiografia por Ressonância Magnética/métodos , Adulto , Algoritmos , Circulação Cerebrovascular , Humanos , Masculino , Reprodutibilidade dos Testes , Tamanho da Amostra , Sensibilidade e Especificidade , Processamento de Sinais Assistido por ComputadorRESUMO
PURPOSE: To evaluate an improved image acquisition and data-processing strategy for assessing aortic vascular geometry and 3D blood flow at 3T. MATERIALS AND METHODS: In a study with five normal volunteers and seven patients with known aortic pathology, prospectively ECG-gated cine three-dimensional (3D) MR velocity mapping with improved navigator gating, real-time adaptive k-space ordering and dynamic adjustment of the navigator acceptance criteria was performed. In addition to morphological information and three-directional blood flow velocities, phase-contrast (PC)-MRA images were derived from the same data set, which permitted 3D isosurface rendering of vascular boundaries in combination with visualization of blood-flow patterns. RESULTS: Analysis of navigator performance and image quality revealed improved scan efficiencies of 63.6%+/-10.5% and temporal resolution (<50 msec) compared to previous implementations. Semiquantitative evaluation of image quality by three independent observers demonstrated excellent general image appearance with moderate blurring and minor ghosting artifacts. Results from volunteer and patient examinations illustrate the potential of the improved image acquisition and data-processing strategy for identifying normal and pathological blood-flow characteristics. CONCLUSION: Navigator-gated time-resolved 3D MR velocity mapping at 3T in combination with advanced data processing is a powerful tool for performing detailed assessments of global and local blood-flow characteristics in the aorta to describe or exclude vascular alterations.