Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 29(15): 22082-22092, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34773584

RESUMO

As a promising solar energy conversion technology, solar water evaporation has been regarded as an energy-efficient approach to alleviate the freshwater shortage caused by industrial water pollution. In this paper, we developed a straightforward method with a solar-driven steam generator (SSG) based on the carbonized green algae (CGA) as a light-to-heat conversion material (LHCM) to deal with the industrial wastewater of gold smelting. CGA SSG exhibited excellent light absorption, hydrophilicity, and water evaporation rate (1.66 kg·m-2·h-1). It accomplished the non-selective removal of heavy metal ions (Cu2+, Pb2+, Zn2+, Hg2+) and CN- in the treatment of gold smelting wastewater, and the ion removal rate was 99%. Compared with traditional and complex wastewater treatment technologies, the solar-driven CGA SSG presented many advantages (low cost, simple preparation, and high performance) in water purification, which could be employed in backward areas to obtain clean water.


Assuntos
Clorófitas , Energia Solar , Purificação da Água , Ouro , Águas Residuárias , Purificação da Água/métodos
2.
J Orthop Surg Res ; 16(1): 463, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34289854

RESUMO

OBJECTIVES: We aimed to explore the bacterial community composition following ocean bacterial infection using an animal model. METHODS: This animal-based experiment was conducted from September 2019 to November 2019. Eighteen seawater filter membranes were collected from Changle City, Fujiian Province, China, on September 8, 2019. Ten filter membranes were used for implantation. Eight filter membranes that were used in the bacterial culture for the exploration of seawater bacteria were assigned to the seawater group (SG). Fourteen healthy adult New Zealand rabbits were randomly divided into the experimental group (EG) and control group (CG). Seawater filter membranes and asepsis membranes were implanted into the tibia in the EG and CG, respectively. One week after surgery, tibial bone pathology tissues were collected and assessed using light microscopy and scanning electron microscopy (SEM). Medullary cavity tissues were collected for the performance of Illumina MiSeq sequencing and bacterial culture. The differences between EG and CG were assessed by pathological observation under light microscopy and SEM, high-throughput bacterial sequencing, and bacterial culture. RESULTS: Compared with the CG, the infection rate was 100%, and the mortality value was 20% after the implantation of the filter membranes in the EG. Both light microscopy and SEM showed that a large number of bacteria were distributed in the bone marrow cavity after ocean bacterial infection. No bacterial growth was found in the CG. Illumina MiSeq sequencing found that Firmicutes, Proteobacteria, Thermotogae, Fusobacteria, Bacteroidetes, and Actinobacteria were the dominant bacteria at the phylum level and Clostridium_sensu_stricto_7, Haloimpatiens, Clostridium_sensu_stricto_15, Clostridiaceae_1, Clostridium_sensu_stricto_18, and Oceanotoga were the dominant bacteria in genus level among the EG. In the bacterial culture of the medullary cavity tissues, Klebsiella pneumoniae, Shewanella algae, Staphylococcus aureus, Escherichia coli, Enterobacter cloacae, and Vibrio vulnificus were the predominant infective species. Moreover, compared with the SG, the EG showed a higher detection rate of E. coli and S. aureus (P = 0.008 and P = 0.001, respectively). The detection rates of V. alginolyticus, V. parahaemolyticus, and V. fluvialis were higher in the SG than the EG (P = 0.007, P = 0.03, and P = 0.03, respectively). CONCLUSIONS: Our model, which was comprehensively evaluated using four techniques: histopathology and SEM observation, gene detection, and bacteria culture, provides a scientific basis for the clinical diagnosis and treatment of patients in such settings.


Assuntos
Infecções Bacterianas/microbiologia , Água do Mar/microbiologia , Tíbia/microbiologia , Animais , Técnicas de Tipagem Bacteriana , China , Modelos Animais de Doenças , Sequenciamento de Nucleotídeos em Larga Escala , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA