Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
IEEE Trans Med Imaging ; 43(6): 2113-2124, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38231819

RESUMO

Taking advantage of multi-modal radiology-pathology data with complementary clinical information for cancer grading is helpful for doctors to improve diagnosis efficiency and accuracy. However, radiology and pathology data have distinct acquisition difficulties and costs, which leads to incomplete-modality data being common in applications. In this work, we propose a Memory- and Gradient-guided Incomplete Modal-modal Learning (MGIML) framework for cancer grading with incomplete radiology-pathology data. Firstly, to remedy missing-modality information, we propose a Memory-driven Hetero-modality Complement (MH-Complete) scheme, which constructs modal-specific memory banks constrained by a coarse-grained memory boosting (CMB) loss to record generic radiology and pathology feature patterns, and develops a cross-modal memory reading strategy enhanced by a fine-grained memory consistency (FMC) loss to take missing-modality information from well-stored memories. Secondly, as gradient conflicts exist between missing-modality situations, we propose a Rotation-driven Gradient Homogenization (RG-Homogenize) scheme, which estimates instance-specific rotation matrices to smoothly change the feature-level gradient directions, and computes confidence-guided homogenization weights to dynamically balance gradient magnitudes. By simultaneously mitigating gradient direction and magnitude conflicts, this scheme well avoids the negative transfer and optimization imbalance problems. Extensive experiments on CPTAC-UCEC and CPTAC-PDA datasets show that the proposed MGIML framework performs favorably against state-of-the-art multi-modal methods on missing-modality situations.


Assuntos
Algoritmos , Gradação de Tumores , Humanos , Gradação de Tumores/métodos , Interpretação de Imagem Assistida por Computador/métodos , Aprendizado de Máquina , Neoplasias/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA