Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(39): e2305078120, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37695879

RESUMO

Current un-sustainable plastic management is exacerbating plastic pollution, an urgent shift is thus needed to create a recycling society. Such recovering carbon (C) and hydrogen (H) from waste plastic has been considered as one practical route to achieve a circular economy. Here, we performed a simple pyrolysis-catalysis deconstruction of waste plastic via a monolithic multilayer stainless-steel mesh catalyst to produce multiwalled carbon nanotubes (MWCNTs) and H2, which are important carbon material and energy carrier to achieve sustainable development. Results revealed that the C and H recovery efficiencies were as high as 86% and 70%, respectively. The unique oxidation-reduction process and improvement of surface roughness led to efficient exposure of active sites, which increased MWCNTs by suppressing macromolecule hydrocarbons. The C recovery efficiency declined by only 5% after 10 cycles, proving the long-term employment of the catalyst. This catalyst can efficiently convert aromatics to MWCNTs by the vapor-solid-solid mechanism and demonstrate good universality in processing different kinds of waste plastics. The produced MWCNTs showed potential in applications of lithium-ion batteries and telecommunication. Owing to the economic profits and environmental benefits of the developed route, we highlighted its potential as a promising alternative to conventional incineration, simultaneously achieving the waste-to-resource strategy and circular economy.

2.
Biotechnol Adv ; 69: 108262, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37758024

RESUMO

Biomass is regarded as the only carbon-containing renewable energy source and has performed an increasingly important role in the gradual substitution of conventional fossil energy, which also contributes to the goals of carbon neutrality. In the past decade, the academic field has paid much greater attention to the development of biomass pyrolysis technologies. However, most biomass conversion technologies mainly derive from the fossil fuel industry, and it must be noticed that the large element component difference between biomass and traditional fossil fuels. Thus, it's necessary to develop biomass directional pyrolysis technology based on the unique element distribution of biomass for realizing enrichment target element (i.e., element economy). This article provides a broad review of biomass directional pyrolysis to produce high-quality fuels, chemicals, and carbon materials based on element economy. The C (carbon) element economy of biomass pyrolysis is realized by the production of high-performance carbon materials from different carbon sources. For efficient H (hydrogen) element utilization, high-value hydrocarbons could be obtained by the co-pyrolysis or catalytic pyrolysis of biomass and cheap hydrogen source. For improving the O (oxygen) element economy, different from the traditional hydrodeoxygenation (HDO) process, the high content of O in biomass would also become an advantage because biomass is an appropriate raw material for producing oxygenated liquid additives. Based on the N (nitrogen) element economy, the recent studies on preparing N-containing chemicals (or N-rich carbon materials) are reviewed. Moreover, the feasibility of the biomass poly-generation industrialization and the suitable process for different types of target products are also mentioned. Moreover, the enviro-economic assessment of representative biomass pyrolysis technologies is analyzed. Finally, the brief challenges and perspectives of biomass pyrolysis are provided.


Assuntos
Carbono , Pirólise , Biomassa , Carbono/química , Biocombustíveis , Hidrogênio/química , Catálise
3.
Sensors (Basel) ; 23(12)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37420690

RESUMO

In this paper, we investigate the problem of a dynamic event-triggered robust controller design for flexible robotic arm systems with continuous-time phase-type semi-Markov jump process. In particular, the change in moment of inertia is first considered in the flexible robotic arm system, which is necessary for ensuring the security and stability control of special robots employed under special circumstances, such as surgical robots and assisted-living robots which have strict lightweight requirements. To handle this problem, a semi-Markov chain is conducted to model this process. Furthermore, the dynamic event-triggered scheme is used to solve the problem of limited bandwidth in the network transmission environment, while considering the impact of DoS attacks. With regard to the challenging circumstances and negative elements previously mentioned, the adequate criteria for the existence of the resilient H∞ controller are obtained using the Lyapunov function approach, and the controller gains, Lyapunov parameters and event-triggered parameters are co-designed. Finally, the effectiveness of the designed controller is demonstrated via numerical simulation using the LMI toolbox in MATLAB.


Assuntos
Procedimentos Cirúrgicos Robóticos , Cadeias de Markov , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA