Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cogn Neurodyn ; 14(2): 169-179, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32226560

RESUMO

Humans use binocular disparity to extract depth information from two-dimensional retinal images in a process called stereopsis. Previous studies usually introduce the standard univariate analysis to describe the correlation between disparity level and brain activity within a given brain region based on functional magnetic resonance imaging (fMRI) data. Recently, multivariate pattern analysis has been developed to extract activity patterns across multiple voxels for deciphering categories of binocular disparity. However, the functional connectivity (FC) of patterns based on regions of interest or voxels and their mapping onto disparity category perception remain unknown. The present study extracted functional connectivity patterns for three disparity conditions (crossed disparity, uncrossed disparity, and zero disparity) at distinct spatial scales to decode the binocular disparity. Results of 27 subjects' fMRI data demonstrate that FC features are more discriminatory than traditional voxel activity features in binocular disparity classification. The average binary classification of the whole brain and visual areas are respectively 87% and 79% at single subject level, and thus above the chance level (50%). Our research highlights the importance of exploring functional connectivity patterns to achieve a novel understanding of 3D image processing.

2.
Hum Brain Mapp ; 40(9): 2596-2610, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30811782

RESUMO

Perceiving disparities is the intuitive basis for our understanding of the physical world. Although many electrophysiology studies have revealed the disparity-tuning characteristics of the neurons in the visual areas of the macaque brain, neuron population responses to disparity processing have seldom been investigated. Many disparity studies using functional magnetic resonance imaging (fMRI) have revealed the disparity-selective visual areas in the human brain. However, it is unclear how to characterize neuron population disparity-tuning responses using fMRI technique. In the present study, we constructed three voxel-wise encoding Gabor models to predict the voxel responses to novel disparity levels and used a decoding method to identify the new disparity levels from population responses in the cortex. Among the three encoding models, the fine-coarse model (FCM) that used fine/coarse disparities to fit the voxel responses to disparities outperformed the single model and uncrossed-crossed model. Moreover, the FCM demonstrated high accuracy in predicting voxel responses in V3A complex and high accuracy in identifying novel disparities from responses in V3A complex. Our results suggest that the FCM can better characterize the voxel responses to disparities than the other two models and V3A complex is a critical visual area for representing disparity information.


Assuntos
Neuroimagem Funcional/métodos , Modelos Teóricos , Reconhecimento Visual de Modelos/fisiologia , Córtex Visual/fisiologia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Córtex Visual/diagnóstico por imagem , Adulto Jovem
3.
BMC Neurosci ; 18(1): 80, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29268696

RESUMO

BACKGROUND: Binocular disparity provides a powerful cue for depth perception in a stereoscopic environment. Despite increasing knowledge of the cortical areas that process disparity from neuroimaging studies, the neural mechanism underlying disparity sign processing [crossed disparity (CD)/uncrossed disparity (UD)] is still poorly understood. In the present study, functional magnetic resonance imaging (fMRI) was used to explore different neural features that are relevant to disparity-sign processing. METHODS: We performed an fMRI experiment on 27 right-handed healthy human volunteers by using both general linear model (GLM) and multi-voxel pattern analysis (MVPA) methods. First, GLM was used to determine the cortical areas that displayed different responses to different disparity signs. Second, MVPA was used to determine how the cortical areas discriminate different disparity signs. RESULTS: The GLM analysis results indicated that shapes with UD induced significantly stronger activity in the sub-region (LO) of the lateral occipital cortex (LOC) than those with CD. The results of MVPA based on region of interest indicated that areas V3d and V3A displayed higher accuracy in the discrimination of crossed and uncrossed disparities than LOC. The results of searchlight-based MVPA indicated that the dorsal visual cortex showed significantly higher prediction accuracy than the ventral visual cortex and the sub-region LO of LOC showed high accuracy in the discrimination of crossed and uncrossed disparities. CONCLUSIONS: The results may suggest the dorsal visual areas are more discriminative to the disparity signs than the ventral visual areas although they are not sensitive to the disparity sign processing. Moreover, the LO in the ventral visual cortex is relevant to the recognition of shapes with different disparity signs and discriminative to the disparity sign.


Assuntos
Disparidade Visual/fisiologia , Córtex Visual/fisiologia , Mapeamento Encefálico/métodos , Feminino , Humanos , Modelos Lineares , Imageamento por Ressonância Magnética , Masculino , Estimulação Luminosa , Córtex Visual/diagnóstico por imagem , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA