Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Environ Geochem Health ; 46(1): 12, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38147164

RESUMO

To conduct a precise health risk assessment of heavy metals (HMs) in soil, it is imperative to ascertain the primary sources of potential health risks. In this study, we conducted comprehensive measurements of HMs, specifically focusing on the accumulation of Cu, Cd, Sb, Zn, and Pb in local soil, which may pose threats to environmental quality. To achieve our objective, we employed a method that combines positive matrix factorization with a health risk assessment model to quantify the health risks associated with specific sources. The results obtained from the geo-accumulation index indicate that the majority of HMs found in the local soil are influenced by anthropogenic activities. Among these sources, local industrial-related activities contributed the largest proportion of HMs to the soil at 34.7%, followed by natural sources at 28.7%, mining and metallurgy-related activities at 28.2%, and traffic-related activities at 8.40%. Although the non-carcinogenic and carcinogenic risks associated with individual HMs were found to be below safety thresholds, the cumulative health risks stemming from total HMs exceeded safety limits for children. Moreover, the unacceptable health risks for children originating from industrial-related activities, natural sources, and mining and metallurgy-related activities were primarily concentrated in proximity to mining sites and industrial areas within the local region. This investigation furnishes valuable insights that can aid governmental authorities in formulating precise control policies to mitigate health threats posed by soils in polymetallic mining areas.


Assuntos
Metalurgia , Metais Pesados , Criança , Humanos , China , Metais Pesados/toxicidade , Medição de Risco , Solo
2.
Environ Res ; 239(Pt 1): 117380, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37832771

RESUMO

Deciphering the temporal patterns of polycyclic aromatic hydrocarbons (PAHs) in sediment cores, and the effect mechanism of sedimentary organic matter (OM) and regional development model on PAHs are crucial for pollution control and environmental management. Herein, sediment core was collected from Chenhu international wetland in Wuhan, central China. Meanwhile, historical trend and source of PAHs and sedimentary OM were presented, respectively. Result demonstrated that the most significant growth of PAHs (increased by 158.8%) was attributed to the significant enhancement of traffic emission (5.57 times), coal combustion (4.59 times), and biomass burning (8.09 times). Similarly, the percentage of phytoplankton (stage Ⅲ: 37.9%; stage Ⅳ: 31.2%) and terrestrial C3 plants (stage Ⅲ: 24.6%; stage Ⅳ: 29.2%) to sedimentary OM hold the dominant position after the stage Ⅱ. The obvious shifts of historical trend and sources in PAHs were highly related to economic development models (r = 0.72, p < 0.001) and sedimentary OM (r = 0.82, p < 0.001). It demonstrated that eutrophication of lake accelerated the burial of PAHs. Redundancy analysis results suggested that TOC was dominating driver of sedimentary PAHs (16.56%) and phytoplankton occupied 9.58%. To further confirm the significant role of economic development models, three different historical trends of PAHs in different regions of China were presented. The result of this study provides the new insight into the geochemistry mechanism of lake sedimentary OM and PAHs. Meanwhile, the relationship of regional development model and sedimentary PAHs was highlighted in this study. Significantly, the main environmental implications of this study are as follows: (1) lake eutrophication of phytoplankton OM accelerated the burial of PAHs in lake sediment; (2) economic development models and energy structure significantly influence the sedimentary PAHs. This study highlights the coupling relationship between OM burial and PAHs sedimentation, and the importance of accelerating the transformation of economic energy structure.


Assuntos
Lagos , Hidrocarbonetos Policíclicos Aromáticos , Biomassa , China , Carvão Mineral , Fitoplâncton
3.
Artigo em Inglês | MEDLINE | ID: mdl-36078702

RESUMO

This study aimed to assess the pollution levels, sources, and human health risks of heavy metals in street dust from a typical industrial district in Wuhan City, Central China. In total, 47 street dust samples were collected from the major traffic arteries and streets around Wuhan Iron and Steel (Group) Company (WISC) in Qingshan District, Wuhan. The concentrations of heavy metals (Cr, Mn, Ni, Zn, Fe, Cu, and Cd) in street dust were determined by atomic absorption spectroscopy. Results indicated that the mean concentrations of Zn (249.71 mg/kg), Cu (51.15 mg/kg), and Cd (0.86 mg/kg) in street dust were higher than their corresponding soil background values in Hubei Province. Heavy metal enrichment is closely related to urban transportation and industrial production. The pollution level of heavy metals in street dust was assessed using the geo-accumulation method (Igeo) and potential ecological risk assessment (PERI). Based on the Igeo value, Cr, Mn, Fe, and Ni showed no pollution, Zn and Cu showed light to moderate contamination, and Cd showed moderate contamination. The PERI values of heavy metals in street dust ranged between 76.70 and 7027.28, which represents a medium to high potential ecological risk. Principal component analysis showed that the sources of heavy metals in street dust were mainly influenced by anthropogenic activities. Among the studied metals, Cu, Cr, Zn, Fe, and Mn mainly come from industrial processes, while Ni and Cd come from traffic exhaust. The non-carcinogenic risk indexes of heavy metals for children and adults are ranked as Cr > Cu > Ni > Cd > Zn. The health risks to children through the different exposure pathways are higher than those for adults. Hand-to-mouth intake is the riskiest exposure pathway for non-carcinogenic risk. In addition, Cr, Ni, and Cd do not pose a carcinogenic risk for the residents.


Assuntos
Poeira , Metais Pesados , Adulto , Cádmio/análise , Carcinógenos/análise , Criança , China , Cidades , Poeira/análise , Monitoramento Ambiental/métodos , Humanos , Metais Pesados/análise , Medição de Risco , Urbanização
4.
Sci Total Environ ; 772: 144949, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-33571769

RESUMO

Residues of dichlorodiphenyltrichloroethane and its metabolites (DDTs) in soils continue to severely threaten and endanger human health. This present study comprehensively interprets the health risks associated with exposure to soil-borne DDTs and also identifies the spatial visualization of risks at a large regional scale in Fujian, China. There was significant spatial variability of human risk across the region, while levels of health risk displayed a significant positive correlation with population density (p < 0.05). High risk levels occurred mostly in the coastal areas in northeastern Fujian, with additional hotspots in inland areas. The highest total incremental lifetime cancer risks (ILCRs) occurred in Sanming, reaching up to 9.52 × 10-5, 3.27 × 10-5, and 1.76 × 10-4 for children, teens, and adults, respectively. Further, the highest hazard index (HI) value was observed in Fuzhou, reaching up to 6.09, 3.84, and 2.37, respectively. The 95% confidence interval of data regarding ILCRs exceeded the recognized safe threshold, whereas the HI has been deemed accepted. Adults were identified as the most susceptible population in terms of cancer risks, with o,p'-DDT being the primary contributor of ILCRs. Moreover, children were showed to be the most vulnerable in terms of non-cancer risks, with p,p'-DDD being the main contributor of HI. Food ingestion appeared to be the dominant exposure pathway, for both cancer and non-cancer risks. The concentration of DDTs (Csoil) and exposure duration (ED) also greatly influenced the risk, together contributing to over 99% of the ILCRs and HI.


Assuntos
Poluentes do Solo , Navegação Espacial , Adolescente , Adulto , Criança , China/epidemiologia , DDT/análise , Monitoramento Ambiental , Humanos , Medição de Risco , Solo , Poluentes do Solo/análise
5.
Bull Environ Contam Toxicol ; 105(6): 941-950, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33170305

RESUMO

Atmospheric particulate matters in nine size fractions were sampled at Huangshi city, Hubei province. Elemental concentrations occurred unimodal size distribution for Zn, Pb and Ni, dimodal distribution for Ca, S, Fe and Ti, and trimodal distribution for Cl, K, Mn, Cu and Cr. Enrichment factor and principal component analysis identified the main sources from crustal material, biomass burning, waste incineration, vehicular and industrial emission. As for the non-carcinogenic health risk through inhalation, there were certain potential risks for Mn and Sb for children, and Pb for children and adults in PM2.5. It showed certain potential risks for Mn, Sb and Pb for children and adults in PM10. As for the carcinogenic health risk through inhalation, Cr in PM2.5 and Ni, Co and Cr in PM10 indicated unacceptable risk for children and adults. Meanwhile, Co and Ni in PM2.5 represented acceptable risk for children.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Material Particulado/análise , Adulto , Biomassa , Carcinógenos/análise , Criança , China , Cidades , Saúde , Humanos , Incineração , Indústrias , Metais Pesados/análise , Análise de Componente Principal , Medição de Risco , Titânio/análise , Urbanização
6.
Sci Total Environ ; 690: 891-899, 2019 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-31302553

RESUMO

As the largest coal-producing province in China, the coal production of Shanxi Province accounts for one third of the country's total. Thus it is of great importance to study the pollution history of typical pollutants in Shanxi Province and their links with energy usage in North China. Sediment cores from two relatively remote lakes in central North China were retrieved to investigate historical evolutions of black carbon (BC) and polycyclic aromatic hydrocarbons (PAHs) in the last ~200 years. The two records show several-fold increases in both concentrations and depositional fluxes of BC, char, soot, and PAHs in recent five decades, which were associated with the influence of anthropogenic activities resulting from socio-economic development in Shanxi Province. However, after ~2000 their fluxes decreased sharply due to China's effort on environmental protection. These changes indicate that atmospheric BC and PAHs loads in the region were affected significantly by recent anthropogenic activities and environmental policies. Ratios of individual PAHs and char/soot indicate pyrogenic sources of these increased pollutants in recent decades, with coking industry and coal combustion as the two major sources. Significant positive correlations between BC and PAHs were observed in both cores of Lake Gonghai and Lake Mayinghai, indicating that they were likely co-transported by BC particles from similar sources. This study provides new and important understanding of the atmospheric pollution history of BC and PAHs in North China.

7.
Environ Geochem Health ; 41(2): 907-919, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30220078

RESUMO

Soil-bound polycyclic aromatic hydrocarbons (PAHs) in farmland are critical to human health. The level, composition, source, and cancer risk of sixteen PAHs in agricultural soil from Ningde, China, were investigated. The results indicated that the total concentrations of 16 PAHs ranged from 77.3 to 1188 ng g-1, with a mean value of 406 ng g-1. Five-ring PAHs were found to have the highest concentrations (148 ± 133 ng g-1), followed by four-ring (120 ± 101 ng g-1), three-ring (61.9 ± 54.2 ng g-1), six-ring (44.6 ± 61.0 ng g-1), and two-ring (31.3 ± 31.0 ng g-1). Employing positive matrix factorization (PMF), four PAH sources including biomass burning (36.3%), coal combustion (35.5%), traffic emissions (16.4%), and coke source (11.8%) were identified. Incremental lifetime cancer risk (ILCR) results showed that ILCR values ranged from 7.1 × 10-4 to 1.1 × 10-3, which will cause moderate-to-high cancer risk to human health mainly via the soil ingestion and dermal contact exposure pathways. The source-oriented results indicated that coal combustion (32.7%), traffic emission (34.3%), and biomass burning (32.4%) had similar contributions to the total cancer risk. Therefore, more attention should be paid to these pyrolysis-originated sources to protect humanity from the health risk of PAHs.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos/análise , Medição de Risco/métodos , Poluentes do Solo/análise , Agricultura , China , Carvão Mineral/análise , Coque , Exposição Ambiental/efeitos adversos , Monitoramento Ambiental/métodos , Humanos , Modelos Teóricos , Neoplasias/induzido quimicamente , Hidrocarbonetos Policíclicos Aromáticos/química , Poluentes do Solo/química , Emissões de Veículos
8.
Ecotoxicol Environ Saf ; 159: 63-70, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29730410

RESUMO

The purpose of this study was to assess the human cancer risk due to the exposure to the soil-bound polycyclic aromatic hydrocarbons (PAHs) from Chengdu Economic Region (CER), western China with the main concern on cancer risk source apportionment. The total concentrations of sixteen PAHs ranged from 12.5 to 75431 ng g-1, with a mean value of 3106 ng g-1, which suggested that the most areas of CER were contaminated. Source apportionment of PAHs was conducted by the positive matrix factorization (PMF) model and the biomass burning contributed most (63.6%) to the total PAHs, followed by petroleum combustion (16.0%), coke source (11.3%), and petrogenic source (9.2%). Results from incremental lifetime cancer risk (ILCR) calculation showed that soil ingestion exerted the highest cancer risk (accounted for 98.1 - 99.3% of the total cancer risk) on human health among three different exposure pathways, followed by dermal contact (0.66 - 1.83%) and inhalation (0.03 - 0.04%). Among different age groups, adult suffered the highest cancer risk via any exposure pathways. Based on PMF and ILCR methods, the cancer risk source apportionment was conducted and the biomass burning showed moderate cancer risk. The petrogenic, coke, and petroleum sources showed low cancer risks to human. To analyze the sensitivity of the parameters used in ILCR calculation, Monte Carlo simulation was employed. The results indicated that the contribution of each source and exposure duration (ED) were the influential parameters on human health associated with soil-bound PAHs. Therefore, much attentions should be paid to biomass burning to avoid cumulative cancer risk.


Assuntos
Biomassa , Exposição Ambiental/análise , Neoplasias , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes do Solo/análise , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , China , Coque , Humanos , Lactente , Pessoa de Meia-Idade , Petróleo , Medição de Risco , Adulto Jovem
9.
Huan Jing Ke Xue ; 38(1): 170-179, 2017 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-29965044

RESUMO

8 surface sediments and 8 water samples were collected from the Daye Lake in August 2015.The 16 kinds of EPA control polycyclic aromatic hydrocarbons (PAHs) were analyzed by GC-MS.The results showed that the PAHs concentrations of surface sediments and water ranged from 35.94 ng·g-1 to 2032.73 ng·g-1 and from 27.94 ng·L-1 to 242.95 ng·L-1,with average contents of 940.61 ng·g-1 and 107.77ng·L-1,respectively.The distribution of PAHs in surface sediments indicated that the contents in the center samples were higher than those in the bank samples,but the water showed nearly the opposite tendency.The 4-5 rings high molecular weight PAHs were the main components in the surface sediments,and the 2,4 and 5 rings PAHs were given priority in water.Compared with the other domestic and oversea lakes,the PAHs pollution of the Daye Lake was at a moderate level.Source apportionment showed that the PAHs in surface sediments and water from the Daye Lake came from the combustion source,HWM-PAHs were the dominant part of the PAHs in the sediment,reflecting the sediment PAHs pollution under the effects of mining and smelting over a long period;All monomer PAHs and total PAHs content in sediment did not exceed the ERM and FEL limiting values,showing that there was no particularly serious ecological risk caused by PAHs in the surface sediments from the Daye Lake;the incremental lifetime cancer risks assessment showed that the uptake risk of PAHs in Daye Lake water through the ingestion and dermal absorption were both in the acceptable range recommended by the USEPA,but all sites had higher risk than the acceptable risk level recommended by the Sweden environmental protection agency and Royal society.The pollution of seven carcinogenic PAHs needs prevention and control.


Assuntos
Monitoramento Ambiental , Lagos/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , China , Exposição Ambiental , Sedimentos Geológicos , Humanos , Medição de Risco
10.
Huan Jing Ke Xue ; 38(6): 2355-2363, 2017 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-29965353

RESUMO

The surface water and surface sediments were collected from Daye Lake in April 2014. The concentrations of heavy metals were determined by atomic absorption spectroscopy. The pollution potential health risk and ecological risk of heavy metals in water and sediment were assessed by the health risk assessment model and the potential ecological risk index method. The results showed that the concentrations of the heavy metals (Ni, Cd, Cu and Pb) was 49.27 µg·L-1, 2.19 µg·L-1, 12.18 µg·L-1, 12.13 µg·L-1(water) and 78.46 mg·kg-1, 77.13 mg·kg-1, 650.13 mg·kg-1 and 134.22 mg·kg-1 (sediment). Enrichment coefficient indicated that the enrichment of Cd, Cu and Pb was more serious, especially the accumulation of Cd was the most obvious. Compared to typical lakes in China, the contents of heavy metals in water and sediment were relatively high. The spatial pollutant distribution of the heavy metals in water and sediment all presented that the concentrations of the heavy metals were relatively higher in east and west of Daye Lake, relatively more uniform in the middle, and their origins were mainly from human activities. The results of environmental risk indicated that the carcinogens and chemical non-carcinogens health risk values of heavy metals by drinking water pathway were 9.77E-08~1.63E-05a-1. Therefore, the pollution of Ni and Cd should be the primary control target for environmental health risk management. The descending order of pollution degree of four metals in sediment was Cd> Cu> Pb> Ni, and Cd was the main contributor of the potential ecological risk elements.

11.
Huan Jing Ke Xue ; 36(1): 194-201, 2015 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-25898664

RESUMO

Each 20 water samples and soil samples (0-10 cm, 10-20 cm) were collected from the riparian zone of Daye Lake in dry season during March 2013. Heavy metals (Cu, Ph, Cd, Zn) have been detected by flame atomic absorption spectrometric (FAAS). The results showed that the average concentrations of Cu, Pb, Cd, Zn in the water were 7.14, 25.94, 15.72 and 37.58 microg x L(-1), respectively. The concentration of Cu was higher than the five degree of the surface water environment quality standard. The average concentrations of Cu, Pb, Cd, Zn in soil(0-10 cm) were 108.38, 53.92, 3.55, 139.26 mg x kg(-1) in soil (10-20 cm) were 93.00, 51.72, 2.08, 171.00 mg x kg(-1), respectively. The Cd concentrations were higher than the three grade value of the national soil environment quality standard. The transportation of Pb from soil to water was relatively stable, and Zn was greatly influenced by soil property and the surrounding environment from soil to water. The transformation of heavy metal in west riparian zone was higher than that of east riparian zone. The potential environmental risk was relatively high. Cu, Pb, Cd, Zn were dominated by residue fraction of the modified BCR sequential extraction method. The overall migration order of heavy metal element was: Pb > Cu > Cd > Zn. There were stronger transformation and higher environmental pollution risk of Cu, Pb. The index of assessment and potential ecological risk coefficient indicated that heavy metal pollution in soil (0-10 cm) was higher than the soil (10-20 cm), Cd was particularly serious.


Assuntos
Metais Pesados/análise , Poluentes do Solo/análise , Solo/química , Poluentes Químicos da Água/análise , Água/análise , China , Monitoramento Ambiental , Lagos , Medição de Risco , Espectrofotometria Atômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA