Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37896740

RESUMO

The high-temperature strain gauge is a sensor for strain measurement in high-temperature environments. The measurement results often have a certain divergence, so the uncertainty of the high-temperature strain gauge system is analyzed theoretically. Firstly, in the conducted research, a deterministic finite element analysis of the temperature field of the strain gauge is carried out using MATLAB software. Then, the primary sub-model method is used to model the system; an equivalent thermal load and force are loaded onto the model. The thermal response of the grid wire is calculated by the finite element method (FEM). Thermal-mechanical coupling analysis is carried out by ANSYS, and the MATLAB program is verified. Finally, the stochastic finite element method (SFEM) combined with the Monte Carlo method (MCM) is used to analyze the effects of the physical parameters, geometric parameters, and load uncertainties on the thermal response of the grid wire. The results show that the difference of temperature and strain calculated by ANSYS and MATLAB is 1.34% and 0.64%, respectively. The calculation program is accurate and effective. The primary sub-model method is suitable for the finite element modeling of strain gauge systems, and the number of elements is reduced effectively. The stochastic uncertainty analysis of the thermal response on the grid wire of a high-temperature strain gauge provides a theoretical basis for the dispersion of the measurement results of the strain gauge.

2.
Math Biosci Eng ; 18(6): 8096-8122, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34814291

RESUMO

In view of the important position of crude oil in the national economy and its contribution to various economic sectors, crude oil price and volatility prediction have become an increasingly hot issue that is concerned by practitioners and researchers. In this paper, a new hybrid forecasting model based on variational mode decomposition (VMD) and kernel extreme learning machine (KELM) is proposed to forecast the daily prices and 7-day volatility of Brent and WTI crude oil. The KELM has the advantage of less time consuming and lower parameter-sensitivity, thus showing fine prediction ability. The effectiveness of VMD-KELM model is verified by a comparative study with other hybrid models and their single models. Except various commonly used evaluation criteria, a recently-developed multi-scale composite complexity synchronization (MCCS) statistic is also utilized to evaluate the synchrony degree between the predictive and the actual values. The empirical results verify that 1) KELM model holds better performance than ELM and BP in crude oil and volatility forecasting; 2) VMD-based model outperforms the EEMD-based model; 3) The developed VMD-KELM model exhibits great superiority compared with other popular models not only for crude oil price, but also for volatility prediction.


Assuntos
Algoritmos , Petróleo , Previsões , Aprendizagem , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA