Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2276: 305-324, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34060051

RESUMO

Specific bioenergetic signature reports on the current metabolic state of the cell, which may be affected by metabolic rearrangement, dysfunction or dysregulation of relevant signaling pathways, altered physiological condition or energy stress. A combined analysis of respiration , glycolytic flux, Krebs cycle activity, ATP levels, and total biomass allows informative initial assessment. Such simple, high-throughput, multiparametric methodology, called cell energy budget (CEB ) platform, is presented here and demonstrated with particular cell and tissue models. The CEB uses a commercial fluorescent lanthanide probe pH-Xtra™ to measure extracellular acidification (ECA) associated with lactate (L-ECA) and combined lactate/CO2 (T-ECA), a phosphorescent probe MitoXpress®-Xtra to measure oxygen consumption rate (OCR), a bioluminescent ATP kit, and an absorbance-based total protein assay. All the assays are performed on a standard multi-label reader. Using the same readouts, the CEB approach can be extended to more detailed mechanistic studies, by targeting specific pathways in cell bioenergetics and measuring other cellular parameters, such as NAD(P)H, Ca2+, mitochondrial pH, membrane potential, redox state, with conventional fluorescent or luminescent probes.


Assuntos
Trifosfato de Adenosina/metabolismo , Dióxido de Carbono/metabolismo , Células/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Ácido Láctico/metabolismo , Animais , Metabolismo Energético , Espaço Extracelular/química , Espaço Extracelular/metabolismo , Corantes Fluorescentes/química , Concentração de Íons de Hidrogênio , Consumo de Oxigênio/fisiologia , Células PC12 , Ratos
2.
Free Radic Biol Med ; 106: 184-195, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28189850

RESUMO

Mitochondrial polarisation is paramount for a variety of cellular functions. Under ischemia, mitochondrial membrane potential (ΔΨm) and proton gradient (ΔpH) are maintained via a reversal of mitochondrial F1Fo ATP synthase (mATPase), which can rapidly deplete ATP and drive cells into energy crisis. We found that under normal conditions in cells with disassembled cytochrome c oxidase complex (COX-deficient HCT116), mATPase maintains ΔΨm at levels only 15-20% lower than in WT cells, and for this utilises relatively little ATP. For a small energy expenditure, mATPase enables mitochondrial ΔpH, protein import, Ca2+ turnover, and supports free radical detoxication machinery enlarged to protect the cells from oxidative damage. Whereas in COX-deficient cells the main source of ATP is glycolysis, the ΔΨm is still maintained upon inhibition of the adenine nucleotide translocators with bongkrekic acid and carboxyatractyloside, indicating that the role of ANTs is redundant, and matrix substrate level phosphorylation alone or in cooperation with ATP-Mg/Pi carriers can continuously support the mATPase activity. Intriguingly, we found that mitochondrial complex III is active, and it contributes not only to free radical production, but also to ΔΨm maintenance and energy budget of COX-deficient cells. Overall, this study demonstrates that F1Fo ATP synthase can support general mitochondrial and cellular functions, working in extremely efficient 'energy saving' reverse mode and flexibly recruiting free radical detoxication and ATP producing / transporting pathways.


Assuntos
Carcinoma/metabolismo , Neoplasias do Colo/metabolismo , Metabolismo Energético/genética , Mitocôndrias/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Trifosfato de Adenosina/metabolismo , Carcinoma/genética , Carcinoma/patologia , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Deficiência de Citocromo-c Oxidase/genética , Deficiência de Citocromo-c Oxidase/metabolismo , Deficiência de Citocromo-c Oxidase/patologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Células HCT116 , Humanos , Potencial da Membrana Mitocondrial , Mitocôndrias/patologia , Fosforilação Oxidativa
3.
Methods Mol Biol ; 1265: 333-48, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25634285

RESUMO

Changes in bioenergetic parameters report on metabolic rearrangement, dysfunction of major pathways, and regulatory processes within the cell, adaptation to energy stress, or new physiological condition. A combined measurement of oxidative phosphorylation, glycolytic flux, the Krebs cycle activity, ATP levels, and total biomass allows detailed metabolic assessment. We describe a simple methodology for high-throughput multiparametric assessment of cell bioenergetics, called cell energy budget (CEB) platform, and demonstrate its practical use with cell models. The CEB relies on a standard multi-label reader with time-resolved fluorescence capabilities, the lanthanide probe pH-Xtra™ to measure extracellular acidification (ECA) associated with lactate (L-ECA) and combined lactate/CO2 (T-ECA) extrusion, the phosphorescent probe MitoXpress®-Xtra to measure oxygen consumption rate (OCR), the bioluminescent total ATP assay, and absorbance-based total protein assay. This approach can be further extended with the measurement of other cellular parameters, such as NAD(P)H, Ca(2+), mitochondrial pH, membrane potential, and redox state, using the corresponding fluorescent or luminescent probes.


Assuntos
Metabolismo Energético , Ensaios de Triagem em Larga Escala , Animais , Glicólise , Ensaios de Triagem em Larga Escala/métodos , Medições Luminescentes/métodos , Fosforilação Oxidativa , Consumo de Oxigênio , Células PC12 , Ratos
4.
Anal Chem ; 84(6): 2930-8, 2012 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-22380020

RESUMO

The supply of oxygen (O(2)) to respiring tissue, cells, and mitochondria regulates metabolism, gene expression, and cell fate. Depending on the cell type and mitochondrial function, O(2) gradients between extra- and intracellular compartments may vary and play important physiological roles such as the regulation of activity of prolyl hydroxylases and adaptive responses to hypoxia. Here we present a new methodology for the analysis of localized O(2) gradients in cultures of adherent cells, using three phosphorescent Pt-porphyrin based probes with different localization. One new O(2) probe targeted to the cell membrane was developed and used together with existing MitoXpress and Nano2 probes to monitor mean pericellular (PC), extracellular (EC), and intracellular (IC) O(2) concentrations, respectively. Mouse fibroblasts and neuronal PC12 cells cultured in standard microplates were stained with probes and measured on a commercial time-resolved fluorescence reader in phosphorescence lifetime mode. Respiring cells exposed to various levels of atmospheric O(2) showed differences in oxygenation of their IC, PC, and EC compartments. Experiments with different cell numbers and modulation of respiration activity demonstrated that these gradients are dynamic and regulated by the O(2) diffusion and consumption rate. The new method facilitates the assessment of such gradients.


Assuntos
Corantes Fluorescentes/química , Medições Luminescentes/métodos , Oxigênio/análise , Compostos de Platina/química , Porfirinas/química , Animais , Linhagem Celular , Respiração Celular , Fibroblastos/citologia , Fibroblastos/metabolismo , Camundongos , Microscopia de Fluorescência , Oxigênio/metabolismo , Células PC12 , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA