Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Water Res ; 253: 121265, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38340701

RESUMO

Waste activated sludge properties vary widely with different regions due to the difference in living standards and geographical distribution, making a big challenge to developing a universally effective sludge dewatering technique. The Fe(II)-activated persulfate (S2O82-) oxidation process shows excellent ability to disrupt sludge cells and extracellular polymeric substances (EPS), and release bound water from sludge flocs. In this study, the discrepancies in the physicochemical characteristics of sludge samples from seven representative cities in China (e.g., dewaterability, EPS composition, surface charge, microbial community, relative abundance of antibiotic resistance genes (ARGs), etc.) were investigated, and the role of Fe(II)-S2O82- oxidation in enhancing removal of antibiotic resistance genes and dewatering ability were explored. The results showed significant differences between the EPS distribution and chemical composition of sludge samples due to different treatment processes, effluent sources, and regions. The Fe(II)-S2O82- oxidation pretreatment had a good enhancement of sludge dewatering capacity (up to 76 %). Microbial analysis showed that the microbial community in each sludge varied significantly depending on the types of wastewater, the wastewater treatment processes, and the regions, but Fe(II)-S2O82- oxidation was able to attack and rupture the sludge zoogloea indiscriminately. Genetic analysis further showed that a considerable number of ARGs were detected in all of these sludge samples and that Fe(II)-S2O82- oxidation was effective in removing ARGs by higher than 90 %. The highly active radicals (e.g., SO4-·, ·OH) produced in this process caused drastic damage to sludge microbial cells and DNA stability while liberating the EPS/cell-bound water. Co-occurrence network analysis highlighted a positive correlation between population distribution and ARGs abundance, while variations in microbial communities were linked to regional differences in living standards and level of economic development. Despite these variations, the Fe(II)-S2O82- oxidation consistently achieved excellent performance in both ARGs removal and sludge dewatering. The significant modularity of associations between different microbial communities also confirms its ability to reduce horizontal gene transfer (HGT) by scavenging microbes.


Assuntos
Antibacterianos , Esgotos , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Resistência Microbiana a Medicamentos/genética , Oxirredução , Água/química , Compostos Ferrosos/química
2.
Chemosphere ; 149: 121-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26855215

RESUMO

Renewable energy recovery from submerged aquatic plants such as Egeria densa (E. densa) via continuous anaerobic digestion (AD) represents a bottleneck because of process instability. Here, a single-chamber membrane-free microbial electrolysis cell (MEC) equipped with a pair of Ti/RuO2 mesh electrodes (i.e. the combined MEC-AD system) was implemented at different applied voltages (0-1.0 V) to evaluate the potential effects of bioelectrochemical stimulation on methane production and process stability of E. densa fermentation. The application of MEC effectively stabilized E. densa fermentation and upgraded overall process performance, especially solid matters removal. E. densa AD process was operated steadily throughout bioelectrochemical process without any signs of imbalance. The solubilization-removal of solid matters and methane conversion efficiency gradually increased with increasing applied voltage, with an average methane yield of approximately 248.2 ± 21.0 mL L(-1) d(-1) at 1.0 V. Whereas, the stability of the process became worse immediately once the external power was removed, with weaken solid matters removal along with methane output, evidencing the favorable and indispensable role in maintaining process stability. The stabilizing effect was further quantitatively demonstrated by statistical analysis using standard deviation (SD), coefficient of variance (CV) and box-plots. The syntrophic and win-win interactions between fermenting bacteria and electroactive bacteria might have contributed to the improved process stability and bioenergy recovery.


Assuntos
Reatores Biológicos/microbiologia , Metano/biossíntese , Traqueófitas/metabolismo , Bactérias , Fontes de Energia Bioelétrica , Eletrodos , Eletrólise , Fermentação , Metano/análise
3.
Environ Sci Pollut Res Int ; 22(12): 9332-44, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25601613

RESUMO

Total concentrations of heavy metals (Cu, Zn, Pb, Cr, Cd, and Ni) were measured among 63 samples of construction and demolition (C&D) wastes collected from chemical, metallurgical and light industries, and residential and recycled aggregates within China for risk assessment. The heavy metal contamination was primarily concentrated in the chemical and metallurgical industries, especially in the electroplating factory and zinc smelting plant. High concentrations of Cd were found in light industry samples, while the residential and recycled aggregate samples were severely polluted by Zn. Six most polluted samples were selected for deep research. Mineralogical analysis by X-ray fluorescence (XRF) spectrometry and X-ray diffraction (XRD), combined with element speciation through European Community Bureau of Reference (BCR) sequential extraction, revealed that a relatively slight corrosion happened in the four samples from electroplating plants but high transfer ability for large quantities of Zn and Cu. Lead arsenate existed in the acid extractable fraction in CI7-8 and potassium chromium oxide existed in the mobility fraction. High concentration of Cr could be in amorphous forms existing in CI9. The high content of sodium in the two samples from zinc smelter plants suggested severe deposition and erosion on the workshop floor. Large quantities of Cu existed as copper halide and most of the Zn appeared to be zinc, zinc oxide, barium zinc oxide, and zincite. From the results of the risk assessment code (RAC), the samples from the electroplating factory posed a very high risk of Zn, Cu, and Cr, a high risk of Ni, a middle risk of Pb, and a low risk of Cd. The samples from the zinc smelting plant presented a high risk of Zn, a middle risk of Cu, and a low risk of Pb, Cr, Cd, and Ni.


Assuntos
Monitoramento Ambiental/métodos , Poluentes Ambientais/química , Metais Pesados/química , Metais Pesados/toxicidade , China , Resíduos Industriais , Indústrias , Reciclagem , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA