Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Methods ; 15: 37, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31011362

RESUMO

BACKGROUND: Plant height is an important selection target since it is associated with yield potential, stability and particularly with lodging resistance in various environments. Rapid and cost-effective estimation of plant height from airborne devices using a digital surface model can be integrated with academic research and practical wheat breeding programs. A bi-parental wheat population consisting of 198 doubled haploid lines was used for time-series assessments of progress in reaching final plant height and its accuracy was assessed by quantitative genomic analysis. UAV-based data were collected at the booting and mid-grain fill stages from two experimental sites and compared with conventional measurements to identify quantitative trait loci (QTL) underlying plant height. RESULTS: A significantly high correlation of R 2 = 0.96 with a 5.75 cm root mean square error was obtained between UAV-based plant height estimates and ground truth observations at mid-grain fill across both sites. Correlations for UAV and ground-based plant height data were also very high (R 2 = 0.84-0.85, and 0.80-0.83) between plant height at the booting and mid-grain fill stages, respectively. Broad sense heritabilities were 0.92 at booting and 0.90-0.91 at mid-grain fill across sites for both data sets. Two major QTL corresponding to Rht-B1 on chromosome 4B and Rht-D1 on chromosome 4D explained 61.3% and 64.5% of the total phenotypic variations for UAV and ground truth data, respectively. Two new and stable QTL on chromosome 6D seemingly associated with accelerated plant growth was identified at the booting stage using UAV-based data. Genomic prediction accuracy for UAV and ground-based data sets was significantly high, ranging from r = 0.47-0.55 using genome-wide and QTL markers for plant height. However, prediction accuracy declined to r = 0.20-0.31 after excluding markers linked to plant height QTL. CONCLUSION: This study provides a fast way to obtain time-series estimates of plant height in understanding growth dynamics in bread wheat. UAV-enabled phenotyping is an effective, high-throughput and cost-effective approach to understand the genetic basis of plant height in genetic studies and practical breeding.

2.
PLoS One ; 11(1): e0146385, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26799483

RESUMO

A crop can be viewed as a complex system with outputs (e.g. yield) that are affected by inputs of genetic, physiology, pedo-climatic and management information. Application of numerical methods for model exploration assist in evaluating the major most influential inputs, providing the simulation model is a credible description of the biological system. A sensitivity analysis was used to assess the simulated impact on yield of a suite of traits involved in major processes of crop growth and development, and to evaluate how the simulated value of such traits varies across environments and in relation to other traits (which can be interpreted as a virtual change in genetic background). The study focused on wheat in Australia, with an emphasis on adaptation to low rainfall conditions. A large set of traits (90) was evaluated in a wide target population of environments (4 sites × 125 years), management practices (3 sowing dates × 3 nitrogen fertilization levels) and CO2 (2 levels). The Morris sensitivity analysis method was used to sample the parameter space and reduce computational requirements, while maintaining a realistic representation of the targeted trait × environment × management landscape (∼ 82 million individual simulations in total). The patterns of parameter × environment × management interactions were investigated for the most influential parameters, considering a potential genetic range of +/- 20% compared to a reference cultivar. Main (i.e. linear) and interaction (i.e. non-linear and interaction) sensitivity indices calculated for most of APSIM-Wheat parameters allowed the identification of 42 parameters substantially impacting yield in most target environments. Among these, a subset of parameters related to phenology, resource acquisition, resource use efficiency and biomass allocation were identified as potential candidates for crop (and model) improvement.


Assuntos
Adaptação Fisiológica/fisiologia , Simulação por Computador , Produtos Agrícolas/fisiologia , Modelos Biológicos , Característica Quantitativa Herdável , Triticum/fisiologia , Adaptação Fisiológica/genética , Austrália , Biologia Computacional , Produtos Agrícolas/genética , Secas , Ecossistema , Chuva , Triticum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA