Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Adv Healthc Mater ; 13(3): e2301811, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37779336

RESUMO

Next generation on-skin electrodes will require soft, flexible, and gentle materials to provide both high-fidelity sensing and wearer comfort. However, many commercially available on-skin electrodes lack these key properties due to their use of rigid hardware, harsh adhesives, uncomfortable support structures, and poor breathability. To address these challenges, this work presents a new device paradigm by joining biocompatible electrospun spider silk with printable liquid metal to yield an incredibly soft and scalable on-skin electrode that is strain-tolerant, conformable, and gentle on-skin. These electrodes, termed silky liquid metal (SLiM) electrodes, are found to be over five times more breathable than commercial wet electrodes, while the silk's intrinsic adhesion mechanism allows SLiM electrodes to avoid the use of harsh artificial adhesives, potentially decreasing skin irritation and inflammation over long-term use. Finally, the SLiM electrodes provide comparable impedances to traditional wet and other liquid metal electrodes, offering a high-fidelity sensing alternative with increased wearer comfort. Human subject testing confirmed the SLiM electrodes ability to sense electrophysiological signals with high fidelity and minimal irritation to the skin. The unique properties of the reported SLiM electrodes offer a comfortable electrophysiological sensing solution especially for patients with pre-existing skin conditions or surface wounds.


Assuntos
Metais , Seda , Humanos , Eletrodos , Pele , Impedância Elétrica
2.
J Physiol ; 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37060278

RESUMO

Personalized, image-based computational heart modelling is a powerful technology that can be used to improve patient-specific arrhythmia risk stratification and ventricular tachycardia (VT) ablation targeting. However, most state-of-the-art methods still require manual interactions by expert users. The goal of this study is to evaluate the feasibility of an automated, deep learning-based workflow for reconstructing personalized computational electrophysiological heart models to guide patient-specific treatment of VT. Contrast-enhanced computed tomography (CE-CT) images with expert ventricular myocardium segmentations were acquired from 111 patients across five cohorts from three different institutions. A deep convolutional neural network (CNN) for segmenting left ventricular myocardium from CE-CT was developed, trained and evaluated. From both CNN-based and expert segmentations in a subset of patients, personalized electrophysiological heart models were reconstructed and rapid pacing was used to induce VTs. CNN-based and expert segmentations were more concordant in the middle myocardium than in the heart's base or apex. Wavefront propagation during pacing was similar between CNN-based and original heart models. Between most sets of heart models, VT inducibility was the same, the number of induced VTs was strongly correlated, and VT circuits co-localized. Our results demonstrate that personalized computational heart models reconstructed from deep learning-based segmentations even with a small training set size can predict similar VT inducibility and circuit locations as those from expertly-derived heart models. Hence, a user-independent, automated framework for simulating arrhythmias in personalized heart models could feasibly be used in clinical settings to aid VT risk stratification and guide VT ablation therapy. KEY POINTS: Personalized electrophysiological heart modelling can aid in patient-specific ventricular tachycardia (VT) risk stratification and VT ablation targeting. Current state-of-the-art, image-based heart models for VT prediction require expert-dependent, manual interactions that may not be accessible across clinical settings. In this study, we develop an automated, deep learning-based workflow for reconstructing personalized heart models capable of simulating arrhythmias and compare its predictions with that of expert-generated heart models. The number and location of VTs was similar between heart models generated from the deep learning-based workflow and expert-generated heart models. These results demonstrate the feasibility of using an automated computational heart modelling workflow to aid in VT therapeutics and has implications for generalizing personalized computational heart technology to a broad range of clinical centres.

3.
Int J Cardiovasc Imaging ; 39(2): 411-421, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36331683

RESUMO

High-resolution scar characterization using late gadolinium enhancement cardiac magnetic resonance imaging (LGE-CMR) is useful for guiding ventricular arrhythmia (VA) treatment. However, imaging study quality may be degraded by breath-holding difficulties, arrhythmias, and implantable cardioverter-defibrillators (ICDs). We evaluated the effect of image quality on left ventricle (LV) base to apex scar interpretation in pre-VA ablation LGE-CMR. 43 consecutive patients referred for VA ablation underwent gradient-recalled-echo LGE-CMR. In ICD patients (n = 24), wide-bandwidth inversion-recovery suppressed ICD artifacts. In non-ICD patients, single-shot steady-state free-precession LGE-CMR could also be performed to reduce respiratory motion/arrhythmia artifacts. Study quality was assessed for adequate/limited scar interpretation due to cardiac/respiratory motion artifacts, ICD-related artifacts, and image contrast. 28% of non-ICD patients had studies where image quality limited scar interpretation in at least one image compared to 71% of ICD patient studies (p = 0.012). A median of five image slices had limited quality per ICD patient study, compared to 0 images per non-ICD patient study. Poorer quality in ICD patients was largely due to motion-related artifacts (54% ICD vs 6% non-ICD studies, p = 0.001) as well as ICD-related image artifacts (25% of studies). In VA ablation patients with ICDs, conventional CMR protocols frequently have image slices with limited scar interpretation, which can limit whole-heart scar assessment. Motion artifacts contribute to suboptimal image quality, particularly in ICD patients. Improved methods for motion and ICD artifact suppression may better delineate high-resolution LGE scar features of interest for guiding VA ablation.


Assuntos
Desfibriladores Implantáveis , Taquicardia Ventricular , Humanos , Meios de Contraste , Cicatriz/patologia , Gadolínio , Valor Preditivo dos Testes , Imageamento por Ressonância Magnética/métodos , Arritmias Cardíacas , Espectroscopia de Ressonância Magnética , Imagem Cinética por Ressonância Magnética/métodos
4.
J Am Heart Assoc ; 10(20): e022217, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34612085

RESUMO

Background We have previously developed an intraprocedural automatic arrhythmia-origin localization (AAOL) system to identify idiopathic ventricular arrhythmia origins in real time using a 3-lead ECG. The objective was to assess the localization accuracy of ventricular tachycardia (VT) exit and premature ventricular contraction (PVC) origin sites in patients with structural heart disease using the AAOL system. Methods and Results In retrospective and prospective case series studies, a total of 42 patients who underwent VT/PVC ablation in the setting of structural heart disease were recruited at 2 different centers. The AAOL system combines 120-ms QRS integrals of 3 leads (III, V2, V6) with pace mapping to predict VT exit/PVC origin site and projects that site onto the patient-specific electroanatomic mapping surface. VT exit/PVC origin sites were clinically identified by activation mapping and/or pace mapping. The localization error of the VT exit/PVC origin site was assessed by the distance between the clinically identified site and the estimated site. In the retrospective study of 19 patients with structural heart disease, the AAOL system achieved a mean localization accuracy of 6.5±2.6 mm for 25 induced VTs. In the prospective study with 23 patients, mean localization accuracy was 5.9±2.6 mm for 26 VT exit and PVC origin sites. There was no difference in mean localization error in epicardial sites compared with endocardial sites using the AAOL system (6.0 versus 5.8 mm, P=0.895). Conclusions The AAOL system achieved accurate localization of VT exit/PVC origin sites in patients with structural heart disease; its performance is superior to current systems, and thus, it promises to have potential clinical utility.


Assuntos
Eletrocardiografia , Taquicardia Ventricular , Complexos Ventriculares Prematuros , Ablação por Cateter , Humanos , Estudos Prospectivos , Reprodutibilidade dos Testes , Estudos Retrospectivos , Taquicardia Ventricular/diagnóstico por imagem , Taquicardia Ventricular/cirurgia , Complexos Ventriculares Prematuros/diagnóstico por imagem , Complexos Ventriculares Prematuros/cirurgia
5.
JACC Clin Electrophysiol ; 7(3): 395-407, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33736758

RESUMO

OBJECTIVES: The objective of this study was to present a new system, the Automatic Arrhythmia Origin Localization (AAOL) system, which used incomplete electroanatomic mapping (EAM) for localization of idiopathic ventricular arrhythmia (IVA) origin on the patient-specific geometry of left ventricular, right ventricular, and neighboring vessels. The study assessed the accuracy of the system in localizing IVA source sites on cardiac structures where pace mapping is challenging. BACKGROUND: An intraprocedural automated site of origin localization system was previously developed to identify the origin of early left ventricular activation by using 12-lead electrocardiograms (ECGs). However, it has limitations, as it could not identify the site of origin in the right ventricle and relied on acquiring a complete EAM. METHODS: Twenty patients undergoing IVA catheter ablation had a 12-lead ECG recorded during clinical arrhythmia and during pacing at various locations identified on EAM geometries. The new system combined 3-lead (III, V2, and V6) 120-ms QRS integrals and patient-specific EAM geometry with pace mapping to predict the site of earliest ventricular activation. The predicted site was projected onto EAM geometry. RESULTS: Twenty-three IVA origin sites were clinically identified by activation mapping and/or pace mapping (8, right ventricle; 15, left ventricle, including 8 from the posteromedial papillary muscle, 2 from the aortic root, and 1 from the distal coronary sinus). The new system achieved a mean localization accuracy of 3.6 mm for the 23 mapped IVAs. CONCLUSIONS: The new intraprocedural AAOL system achieved accurate localization of IVA origin in ventricles and neighboring vessels, which could facilitate ablation procedures for patients with IVAs.


Assuntos
Ablação por Cateter , Taquicardia Ventricular , Arritmias Cardíacas/diagnóstico , Eletrocardiografia , Humanos , Estudos Prospectivos , Taquicardia Ventricular/cirurgia
6.
Circ Arrhythm Electrophysiol ; 13(7): e008262, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32538133

RESUMO

BACKGROUND: To facilitate ablation of ventricular tachycardia (VT), an automated localization system to identify the site of origin of left ventricular activation in real time using the 12-lead ECG was developed. The objective of this study was to prospectively assess its accuracy. METHODS: The automated site of origin localization system consists of 3 steps: (1) localization of ventricular segment based on population templates, (2) population-based localization within a segment, and (3) patient-specific site localization. Localization error was assessed by the distance between the known reference site and the estimated site. RESULTS: In 19 patients undergoing 21 catheter ablation procedures of scar-related VT, site of origin localization accuracy was estimated using 552 left ventricular endocardial pacing sites pooled together and 25 VT-exit sites identified by contact mapping. For the 25 VT-exit sites, localization error of the population-based localization steps was within 10 mm. Patient-specific site localization achieved accuracy of within 3.5 mm after including up to 11 pacing (training) sites. Using 3 remotes (67.8±17.0 mm from the reference VT-exit site), and then 5 close pacing sites, resulted in localization error of 7.2±4.1 mm for the 25 identified VT-exit sites. In 2 emulated clinical procedure with 2 induced VTs, the site of origin localization system achieved accuracy within 4 mm. CONCLUSIONS: In this prospective validation study, the automated localization system achieved estimated accuracy within 10 mm and could thus provide clinical utility.


Assuntos
Potenciais de Ação , Eletrocardiografia , Sistema de Condução Cardíaco/fisiopatologia , Frequência Cardíaca , Taquicardia Ventricular/diagnóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Automação , Ablação por Cateter , Técnicas Eletrofisiológicas Cardíacas , Feminino , Sistema de Condução Cardíaco/cirurgia , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Prospectivos , Reprodutibilidade dos Testes , Processamento de Sinais Assistido por Computador , Taquicardia Ventricular/fisiopatologia , Taquicardia Ventricular/cirurgia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA