Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1358801, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38895732

RESUMO

Background: Rapid and accurate diagnosis of the causative agents is essential for clinical management of bloodstream infections (BSIs) that might induce sepsis/septic shock. A considerable number of suspected sepsis patients initially enter the health-care system through an emergency department (ED), hence it is vital to establish an early strategy to recognize sepsis and initiate prompt care in ED. This study aimed to evaluate the diagnostic performance and clinical value of droplet digital PCR (ddPCR) assay in suspected sepsis patients in the ED. Methods: This was a prospective single-centered observational study including patients admitted to the ED from 25 October 2022 to 3 June 2023 with suspected BSIs screened by Modified Shapiro Score (MSS) score. The comparison between ddPCR and blood culture (BC) was performed to evaluate the diagnostic performance of ddPCR for BSIs. Meanwhile, correlative analysis between ddPCR and the inflammatory and prognostic-related biomarkers were conducted to explore the relevance. Further, the health economic evaluation of the ddPCR was analyzed. Results: 258 samples from 228 patients, with BC and ddPCR performed simultaneously, were included in this study. We found that ddPCR results were positive in 48.13% (103 of 214) of episodes, with identification of 132 pathogens. In contrast, BC only detected 18 positives, 88.89% of which were identified by ddPCR. When considering culture-proven BSIs, ddPCR shows an overall sensitivity of 88.89% and specificity of 55.61%, the optimal diagnostic power for quantifying BSI through ddPCR is achieved with a copy cutoff of 155.5. We further found that ddPCR exhibited a high accuracy especially in liver abscess patients. Among all the identified virus by ddPCR, EBV has a substantially higher positive rate with a link to immunosuppression. Moreover, the copies of pathogens in ddPCR were positively correlated with various markers of inflammation, coagulation, immunity as well as prognosis. With high sensitivity and specificity, ddPCR facilitates precision antimicrobial stewardship and reduces health care costs. Conclusions: The multiplexed ddPCR delivers precise and quantitative load data on the causal pathogen, offers the ability to monitor the patient's condition and may serve as early warning of sepsis in time-urgent clinical situations as ED. Importance: Early detection and effective administration of antibiotics are essential to improve clinical outcomes for those with life-threatening infection in the emergency department. ddPCR, an emerging tool for rapid and sensitive pathogen identification used as a precise bedside test, has developed to address the current challenges of BSI diagnosis and precise treatment. It characterizes sensitivity, specificity, reproducibility, and absolute quantifications without a standard curve. ddPCR can detect causative pathogens and related resistance genes in patients with suspected BSIs within a span of three hours. In addition, it can identify polymicrobial BSIs and dynamically monitor changes in pathogenic microorganisms in the blood and can be used to evaluate antibiotic efficacy and survival prognosis. Moreover, the copies of pathogens in ddPCR were positively correlated with various markers of inflammation, coagulation, immunity. With high sensitivity and specificity, ddPCR facilitates precision antimicrobial stewardship and reduces health care costs.


Assuntos
Diagnóstico Precoce , Serviço Hospitalar de Emergência , Reação em Cadeia da Polimerase , Sepse , Humanos , Estudos Prospectivos , Sepse/diagnóstico , Sepse/microbiologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Reação em Cadeia da Polimerase/métodos , Sensibilidade e Especificidade , Biomarcadores/sangue , Hemocultura/métodos , Adulto
2.
Respir Res ; 22(1): 194, 2021 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-34217280

RESUMO

BACKGROUND: We recently reported histone methyltransferase enhancer of zeste homolog 2 (EZH2) as a key epigenetic regulator that contributes to the dysfunction of innate immune responses to sepsis and subsequent lung injury by mediating the imbalance of macrophage polarization. However, the role of EZH2 in acute respiratory distress syndrome (ARDS)-associated fibrosis remains poorly understood. METHODS: In this study, we investigated the role and mechanisms of EZH2 in pulmonary fibrosis in a murine model of LPS-induced ARDS and in ex-vivo cultured alveolar macrophages (MH-S) and mouse lung epithelial cell line (MLE-12) by using 3-deazaneplanocin A (3-DZNeP) and EZH2 the small interfering (si) RNA. RESULTS: We found that treatment with 3-DZNeP significantly ameliorated the LPS-induced direct lung injury and fibroproliferation by blocking EMT through TGF-ß1/Smad signaling pathway and regulating shift of macrophage phenotypes. In the ex-vivo polarized alveolar macrophages cells, treatment with EZH2 siRNA or 3-DZNeP suppressed the M1 while promoted the M2 macrophage differentiation through modulating the STAT/SOCS signaling pathway and activating PPAR-γ. Moreover, we identified that blockade of EZH2 with 3-DZNeP suppressed the epithelial to mesenchymal transition (EMT) in co-cultured bronchoalveolar lavage fluid (BALF) and mouse lung epithelial cell line through down-regulation of TGF-ß1, TGF-ßR1, Smad2 while up-regulation of Smad7 expression. CONCLUSIONS: These results indicate that EZH2 is involved in the pathological process of ARDS-associated pulmonary fibrosis. Targeting EZH2 may be a potential therapeutic strategy to prevent and treat pulmonary fibrosis post ARDS.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Macrófagos/metabolismo , Fenótipo , Fibrose Pulmonar/metabolismo , Síndrome do Desconforto Respiratório/metabolismo , Animais , Polaridade Celular/efeitos dos fármacos , Polaridade Celular/fisiologia , Técnicas de Cocultura , Lipopolissacarídeos/toxicidade , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/prevenção & controle , RNA Interferente Pequeno/administração & dosagem , Síndrome do Desconforto Respiratório/induzido quimicamente , Síndrome do Desconforto Respiratório/prevenção & controle
3.
Virol J ; 17(1): 72, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32517704

RESUMO

BACKGROUND: Porcine circovirus type 2 (PCV2) is an economically important pathogen affecting swine industry worldwide. The production of current PCV2 vaccines is time-consuming and expensive. Elastin-like polypeptides (ELP) undergo temperature-dependent inverse phase transition and ELPylated proteins can be purified simply by inverse transition cycling (ITC). METHODS: The Cap protein of PCV2b, together with the virus neutralizing (VN) epitopes of PCV2a, PCV2d and PCV2e, was expressed in E. coli as an ELPylated protein, and purified by ITC in the presence of mild detergents. For the control purpose, the Cap protein was also expressed as a His-tagged protein and purified by nickel affinity chromatography. The formation of ELPylated VLP (ELP-VLP) and His-tagged VLP (VLP) was revealed by transmission electron microscopy. Mice were immunized two times with the two forms of VLP and the antigen-specific IgG antibody, VN antibody, cytokine responses and immunoprotection against PCV2 challenge were compared. RESULTS: ELPylated Cap protein was expressed as a soluble protein and purified to 94.3% purity by ITC in the presence of 1% Triton X-100 and 0.5 M urea. His-tagged Cap fusion protein was expressed as insoluble inclusion bodies and purified to 90% purity under denatured conditions. The two purified fusion proteins assembled into VLP with similar morphology. Compared to immunization with VLP, immunization with ELP-VLP induced significantly (p < 0.01) stronger VN antibody response and slightly (p < 0.05) stronger Cap-specific IgG antibody response, cytokine production and immunoprotection against PCV2 challenge. CONCLUSION: A novel ELPylation platform for easy preparation of PCV2 VLP was established and the prepared ELP-VLP was more immunogenic than VLP. The ELPylation technology could be used for other VLP preparation and the prepared ELP-VLP could be developed as a novel PCV2 subunit vaccine.


Assuntos
Infecções por Circoviridae/prevenção & controle , Infecções por Circoviridae/veterinária , Circovirus/imunologia , Elastina/química , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/sangue , Infecções por Circoviridae/imunologia , Elastina/imunologia , Escherichia coli/genética , Imunoglobulina G/sangue , Camundongos , Camundongos Endogâmicos BALB C , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/virologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas Virais/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA