Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Food Chem Toxicol ; 181: 114106, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37852351

RESUMO

Previous work demonstrated the utility of using human-derived intestinal epithelial cell (IEC) lines cultured as polarized monolayers on Transwell® filters to differentiate between hazardous and non-hazardous proteins. The current study seeks to further resolve appropriate concentrations for evaluating proteins of unknown hazard potential using the IEC experimental platform and leverages these parameters for evaluating the potential toxicity of insecticidal proteins characteristic of those expressed in genetically modified (GM) agricultural biotechnology crops. To establish optimal test protein concentrations, effects of several known hazardous (C. perfringens epsilon toxin, Listeriolysin O, Phaseolus vulgaris erythroagglutinin, E. coli Shiga toxin 1, C. difficile Toxin B and wheat germ agglutinin) and non-hazardous (Ara-h2, ß-lactoglobulin, fibronectin and Rubisco) proteins on IEC barrier integrity and cell viability were evaluated at concentration ranges. Two insecticidal proteins (AfIP-1A and AfIP-1B) were evaluated for effects in the IEC assay, a seven-day insecticidal bioassay, and assessed in a high-dose 14-day acute oral toxicity study in mice. The results obtained from the human in vitro IEC assay were consistent with results obtained from an in vivo acute oral toxicity study, both demonstrating that the combination of AfIP-1A and AfIP-1B do not exhibit any identifiable harmful impacts on mammalian cells.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Humanos , Animais , Camundongos , Toxinas Bacterianas/metabolismo , Escherichia coli , Intestinos , Células Epiteliais , Mucosa Intestinal/metabolismo , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA