Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
NMR Biomed ; 29(4): 444-50, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26820580

RESUMO

T2 relaxation time is a quantitative MRI in vivo surrogate of cerebral tissue damage in multiple sclerosis (MS) patients. Cortical T2 prolongation is a known feature in later disease stages, but has not been demonstrated in the cortical normal appearing gray matter (NAGM) in early MS. This study centers on the quantitative evaluation of the tissue parameter T2 in cortical NAGM in a collective of early MS and clinically isolated syndrome (CIS) patients, hypothesizing that T2 prolongation is already present at early disease stages and variable over space, in line with global and focal inflammatory processes in MS. Additionally, magnetization transfer ratio (MTR) mapping was performed for further characterization of the expected cortical T2 alteration. Quantitative T2 and MTR maps were acquired from 12 patients with CIS and early MS, and 12 matched healthy controls. The lesion-free part of the cortical volume was identified, and the mean T2 and MTR values and their standard deviations within the cortical volume were determined. For evaluation of spatial specificity, cortical lobar subregions were tested separately for differences of mean T2 and T2 standard deviation. We detected significantly prolonged T2 in cortical NAGM in patients. T2 prolongation was found across the whole cerebral cortex and in all individual lobar subregions. Significantly higher standard deviations across the respective region of interest were found for the whole cerebral cortex and all subregions, suggesting the occurrence of spatially inhomogeneous cortical damage in all regions studied. A trend was observed for MTR reduction and increased MTR variability across the whole cortex in the MS group, suggesting demyelination. In conclusion, our results suggest that cortical damage in early MS is evidenced by spatially inhomogeneous T2 prolongation which goes beyond demyelination. Iron deposition, which is known to decrease T2, seems less prominent.


Assuntos
Córtex Cerebral/patologia , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/patologia , Adulto , Estudos de Casos e Controles , Demografia , Feminino , Humanos , Masculino
2.
Neurogenetics ; 15(2): 129-34, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24638856

RESUMO

Recent large-scale association studies have identified over 100 MS risk loci. One of these MS risk variants is single-nucleotide polymorphism (SNP) rs17066096, located ~14 kb downstream of IL22RA2. IL22RA2 represents a compelling MS candidate gene due to the role of IL-22 in autoimmunity; however, rs17066096 does not map into any known functional element. We assessed whether rs17066096 or a nearby proxy SNP may exert pathogenic effects by affecting microRNA-to-mRNA binding and thus IL22RA2 expression using comprehensive in silico predictions, in vitro reporter assays, and genotyping experiments in 6,722 individuals. In silico screening identified two predicted microRNA binding sites in the 3'UTR of IL22RA2 (for hsa-miR-2278 and hsa-miR-411-5p) encompassing a SNP (rs28366) in moderate linkage disequilibrium with rs17066096 (r (2) = 0.4). The binding of both microRNAs to the IL22RA2 3'UTR was confirmed in vitro, but their binding affinities were not significantly affected by rs28366. Association analyses revealed significant association of rs17066096 and MS risk in our independent German dataset (odds ratio = 1.15, P = 3.48 × 10(-4)), but did not indicate rs28366 to be the cause of this signal. While our study provides independent validation of the association between rs17066096 and MS risk, this signal does not appear to be caused by sequence variants affecting microRNA function.


Assuntos
Regiões 3' não Traduzidas , Regulação da Expressão Gênica , MicroRNAs/metabolismo , Esclerose Múltipla/genética , Polimorfismo de Nucleotídeo Único , Receptores de Interleucina/genética , Sítios de Ligação , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Células HEK293 , Humanos , Masculino , RNA Mensageiro/metabolismo , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA