Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Card Electrophysiol Clin ; 14(1): 11-20, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35221078

RESUMO

We review the current data on epidemiology, the clinical significance, the pathophysiologic mechanisms, and the treatment of VAs in the setting of COVID-19. VAs prevail in 0.15% to 8% of hospitalized patients, but only sustained and rapid tachyarrhythmias are purportedly associated with a significant increase in mortality. Multiple factors can elicit VAs, which are ultimately deemed to be a marker of severe systemic disease rather than a distinct cardiac condition. Even though the electrophysiologist plays a determinant role in the secondary prevention of VAs, a multidisciplinary approach is indispensable for primary prophylaxis and acute management.


Assuntos
COVID-19 , Arritmias Cardíacas/epidemiologia , Arritmias Cardíacas/terapia , COVID-19/epidemiologia , Humanos , Prevalência , SARS-CoV-2 , Taquicardia
2.
Front Cardiovasc Med ; 9: 822269, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35155637

RESUMO

OBJECTIVES: Cardiac computed tomography (CCT) is a common pre-operative imaging modality to evaluate pulmonary vein anatomy and left atrial appendage thrombus in patients undergoing catheter ablation (CA) for atrial fibrillation (AF). These images also allow for full volumetric left atrium (LA) measurement for recurrence risk stratification, as larger LA volume (LAV) is associated with higher recurrence rates. Our objective is to apply deep learning (DL) techniques to fully automate the computation of LAV and assess the quality of the computed LAV values. METHODS: Using a dataset of 85,477 CCT images from 337 patients, we proposed a framework that consists of several processes that perform a combination of tasks including the selection of images with LA from all other images using a ResNet50 classification model, the segmentation of images with LA using a UNet image segmentation model, the assessment of the quality of the image segmentation task, the estimation of LAV, and quality control (QC) assessment. RESULTS: Overall, the proposed LAV estimation framework achieved accuracies of 98% (precision, recall, and F1 score metrics) in the image classification task, 88.5% (mean dice score) in the image segmentation task, 82% (mean dice score) in the segmentation quality prediction task, and R 2 (the coefficient of determination) value of 0.968 in the volume estimation task. It correctly identified 9 out of 10 poor LAV estimations from a total of 337 patients as poor-quality estimates. CONCLUSIONS: We proposed a generalizable framework that consists of DL models and computational methods for LAV estimation. The framework provides an efficient and robust strategy for QC assessment of the accuracy for DL-based image segmentation and volume estimation tasks, allowing high-throughput extraction of reproducible LAV measurements to be possible.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA