Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Pollut ; 248: 1088-1097, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30871891

RESUMO

Microplastics (MPs), are tiny plastic fragments from 1 µm to 5 mm generally found in the aquatic environment which can be easily ingested by organisms and may cause chronic physical but also toxicological effects. Toxicological assays on fish cell lines are commonly used as an alternative tool to provide fast and reliable assessment of the toxic and ecotoxic properties of chemicals or mixtures. Rainbow trout liver cell line (RTLW-1) was used to evaluate the toxicity of pollutants sorbed to MPs sampled in sandy beaches from different islands around the world during the first Race for Water Odyssey in 2015. The collected MPs were analyzed for polymer composition and associated persistent organic pollutants: polycyclic aromatic hydrocarbons (PAHs), polychlorobiphenyls (PCBs) and dichlorodiphenyltrichloroethane (DDT). In addition, DMSO-extracts from virgin MPs, MPs artificially coated with B[a]P and environmental MPs were analyzed with different bioassays: MTT reduction assay (MTT), ethoxyresorufin-O-deethylase (EROD) assay and comet assay. Microplastics from sand beaches were dominated by polyethylene, followed by polypropylene fragments with variable proportions. Organic pollutants found on plastic from beach sampling was PAHs (2-71 ng g-1). Samples from Bermuda (Somerset Long Bay) and Hawaii (Makapu'u) showed the highest concentration of PAHs and DDT respectively. No toxicity was observed for virgin microplastics. No cytotoxicity was observed on cells exposed to MP extract. However, EROD activity was induced and differently modulated depending on the MPs locations suggesting presence of different pollutants or additives in extract. DNA damage was observed after exposure to four microplastics samples on the six tested. Modification of EROD activity level and DNA damage rate highlight MPs extract toxicity on fish cell line.


Assuntos
Praias , Monitoramento Ambiental/métodos , Oncorhynchus mykiss/metabolismo , Plásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocromo P-450 CYP1A1/metabolismo , DDT/análise , DDT/toxicidade , Dano ao DNA , Havaí , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/enzimologia , Oncorhynchus mykiss/genética , Plásticos/análise , Bifenilos Policlorados/análise , Bifenilos Policlorados/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Testes de Toxicidade , Poluentes Químicos da Água/análise
2.
Sci Total Environ ; 572: 794-803, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27528480

RESUMO

This study firstly aims to assess the field performances of low density polyethylene (LDPE) and silicone rubber (SR) samplers for the monitoring of polychlorinated biphenyls (PCBs) in water regarding the uptake, the sampling rate (RS) estimated by using performance reference compounds (PRCs) and the time-weighted average (TWA) concentrations. The second aim is to evaluate the efficiency of these samplers to investigate PCB sources (localization and imputation steps) using methods with and without PRCs to correct for the impact of water velocity on the uptake. Samplers spiked with PRCs were deployed in the outfalls of two PCB sources and at 8 river sites situated upstream and downstream of the outfalls. After 6weeks, the uptake of PCBs in the linear phase was equivalent in LDPE and SR but 5 times lower in LDPE for PCBs approaching equilibrium. PRC-based RS and water velocity (0.08 to 1.21ms-1) were well correlated in river (LDPE: R2=0.91, SR: R2=0.96) but not in outfalls (higher turbulences and potential release of PRCs to air). TWA concentrations obtained with SR were slightly higher than those obtained with LDPE (factor 1.4 to 2.6 in river) likely because of uncertainty in sampler-water partition coefficient values. Concentrations obtained through filtration and extraction of water samples (203L) were 1.6 and 5.1 times higher than TWA concentrations obtained with SR and LDPE samplers, respectively. PCB sources could efficiently be localized when PRCs were used (increases of PCB loads in river) but the impact of high differences of water velocity was overcorrected (leading sometimes to false positives and negatives). Increases of PCB loads in the river could not be entirely imputed to the investigated sources (underestimation of PCBs contributing to the load increases). A method without PRCs (relationship between uptake and water velocity) appeared to be a good complementary method for LDPE.


Assuntos
Monitoramento Ambiental/instrumentação , Bifenilos Policlorados/análise , Rios/química , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Desenho de Equipamento , Polietileno , Elastômeros de Silicone , Suíça
3.
Sci Total Environ ; 499: 319-26, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25201819

RESUMO

One aim of this study is to determine the impact of water velocity on the uptake of indicator polychlorinated biphenyls (iPCBs) by silicone rubber (SR) and low-density polyethylene (LDPE) passive samplers. A second aim is to assess the efficiency of performance reference compounds (PRCs) to correct for the impact of water velocity. SR and LDPE samplers were spiked with 11 or 12 PRCs and exposed for 6 weeks to four different velocities (in the range of 1.6 to 37.7 cm s(-1)) in river-like flow conditions using a channel system supplied with river water. A relationship between velocity and the uptake was found for each iPCB and enables to determine expected changes in the uptake due to velocity variations. For both samplers, velocity increases from 2 to 10 cm s(-1), 30 cm s(-1) (interpolated data) and 100 cm s(-1) (extrapolated data) lead to increases of the uptake which do not exceed a factor of 2, 3 and 4.5, respectively. Results also showed that the influence of velocity decreased with increasing the octanol-water coefficient partition (log K(ow)) of iPCBs when SR is used whereas the opposite effect was observed for LDPE. Time-weighted average (TWA) concentrations of iPCBs in water were calculated from iPCB uptake and PRC release. These calculations were performed using either a single PRC or all the PRCs. The efficiency of PRCs to correct the impact of velocity was assessed by comparing the TWA concentrations obtained at the four tested velocities. For SR, a good agreement was found among the four TWA concentrations with both methods (average RSD<10%). Also for LDPE, PRCs offered a good correction of the impact of water velocity (average RSD of about 10 to 20%). These results contribute to the process of acceptance of passive sampling in routine regulatory monitoring programs.


Assuntos
Monitoramento Ambiental/métodos , Bifenilos Policlorados/análise , Rios/química , Movimentos da Água , Poluentes Químicos da Água/análise , Monitoramento Ambiental/instrumentação , Polietileno/química , Elastômeros de Silicone/química
4.
Environ Sci Pollut Res Int ; 16 Suppl 1: S76-85, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19229579

RESUMO

BACKGROUND, AIM, AND SCOPE: Current knowledge on environmental impacts of industrial activities in Romania, particularly persistent organic pollutants (POPs), indicates that environmental standards of the European Union are not systematically met. In our study area, additional sources of POPs are agriculture and domestic wastes. Very scarce information is available upon environmental contaminations and effects. In the present study, we investigated the chemical pollution and their eventual impact on the ecosystem by measuring POPs and by using biological indicators of pollution. MATERIALS AND METHODS: The survey was carried out at six main sample sites along the Bahlui River. Sediments were chemically analysed for their content in polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs)-hexachlorocyclohexanes (HCHs) isomers and the dichlorodiphenyl trichloroethane (DDT) family. River water was biologically monitored at the level of phytoplankton and benthic invertebrates' communities. Water samples from six locations have been analyzed for algal species composition and correspondence to various water quality indices. Biological samples have been taken from the same locations so as to calculate the macroinvertebrate indices. In the most polluted areas, as revealed by previous methods, toxicity was tested by exposing the green alga Pseudokirchneriella subcapitata and the cladoceran Daphnia magna to various dilutions of water sample. RESULTS: Important concentrations of POPs were identified only in sediments at river mouths (sites S5 and S6). Along the year, the sum of PCB concentrations ranged between 3 and 10 ng/g dw (S5), and between 4 and 26 ng/g dw (S6). Concentration of HCHs ranged between 0.4 and 3 ng/g dw (both S5 and S6) with a higher contribution of the gamma-HCH (30-70%), followed by beta-HCH (20-50%). The beta-HCH isomer was found at lower concentrations or even not detected in outer city sites. DDTs were found at higher concentrations than HCHs and ranged between 0.18 and 4 ng/g dw (S5) and between 0.56 and 18 ng/g dw (S6). The parent compound, p,p'-DDT, could be detected only in low concentrations (up to 5 ng/g dw) and contributed with less than 30% to the sum of DDTs in sediment. The principal contributors of the SigmaDDTs in sediment were p,p'-DDE, and p,p'-DDD. The o,p'-DDD and DDT isomers were minor contributors to the sum of DDT. PAHs were found at higher concentrations than DDTs and ranged between 6 and 36 ng/g dw (S5) and between 36 and 155 ng/g dw (S6). Fluoranthene was predominant (up to 40%), followed by phenantrene (up to 30%), naphthalene (up to 35%), and benzo-(g,h,i)-perylene (up to 23%). The saprobity index and the diatom index increased from springs to river mouth, indicating a decrease in the water quality, but within the limits of moderate pollution. The saprobity index varied between 1.99 at spring to 2.70 at mouth. The diatom index varied from 3.48 to 3.14. The species' richness in phytoplankton has a less clear pattern along the river, but in general, it appears to be negatively influenced by pollution. At the level of biological consumer species, the analyses of the macroinvertebrates confirm the situation and the tendency shown with algae. In addition, the Shannon-Wiener index, the Pielou evenness index, and the McNaughton dominance index indicate a peculiar pattern: invertebrate communities appear to a have a more stable structure along the river, with visible shifts at springs and at river mouths. Water toxicity testing indicates low toxicity of river waters around the city of Iasi, with two notable exceptions: the point pollution at the domestic wastewater treatment discharge and at the old open-air deposit of domestic solid wastes. Another important result was that tested algae appeared to be more readily affected than tested cladoceran: EC(50) (percent effluent) was 16 in algae and 28 in cladocerans. The slope of toxic effect was also much steeper in cladocerans (6) than in algae (1.8), which means that the toxic effect is more sudden on the tested invertebrates than on the tested algae. DISCUSSION: Pollutant concentrations reported herein are lower or similar than those reported for the sediments by earlier studies (RIZA 2000; Dragan et al., Int J Environ Anal Chem 86:833-842, 2006). Ratios of individual PAH compounds indicate important pyrolytic inputs and suggest that PAHs in the area are derived from the combustion of fossil fuels. Biologically, the waters appear to be beta-mesosaprobic towards alpha-mesosaprobic according to the saprobic index classification and undergo moderate pollution according to the diatom index classification. Water quality decreases from springs to river mouths. Algal species richness index has a less clear pattern along the river. Water toxicity is low, but certain sources of point pollution require increased attention. CONCLUSIONS: The water quality is better than expected, probably because of the drop in pollution intensity following the collapse of local agricultural and industrial activity following the fall of communism in 1989. Nevertheless, further studies will be needed to confirm and refine our results. While this study draws no strident alarm, it appeals for high attention, particularly because the economic activity in the area is expected to increase. RECOMMENDATIONS AND PERSPECTIVES: Future close monitoring will be necessary for insuring compliance with the Water Framework Directive, and for refining standards and understanding of the local situation, but with relevance for the wider international community. On the basis of the situation described in the present study, we recommend that future studies dedicate specific efforts to point pollution and effluent toxicity, particularly around the city of Iasi. For a better understanding of pollution and its effects, we recommend pursuing the type of multidisciplinary investigations proposed by the present study: chemical, ecotoxicological, and ecological. We also recommend that new methods should be developed and/or refined, like the empirical determination of partitioning coefficients in water and soils, process-based toxicity methods in ecotoxicological assessments, searching for interactions between pollution, producers, and consumers in aquatic ecosystems. We also recommend preference for cheaper survey methods, as these will be more applicable locally.


Assuntos
Compostos Orgânicos/toxicidade , Praguicidas/toxicidade , Rios/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade , Animais , Invertebrados , Compostos Orgânicos/química , Praguicidas/química , Fitoplâncton , Romênia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA