Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 938: 173270, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38772491

RESUMO

Accurate measuring, mapping, and monitoring of mangrove forests support the sustainable management of mangrove blue carbon in the Asia-Pacific. Remote sensing coupled with modeling can efficiently and accurately estimate mangrove blue carbon stocks at larger spatiotemporal extents. This study aimed to identify trends in remote sensing/modeling employed in estimating mangrove blue carbon, attributes/variations in mangrove carbon sequestration estimated using remote sensing, and to compile research gaps and opportunities, followed by providing recommendations for future research. Using a systematic literature review approach, we reviewed 105 remote sensing-based peer-reviewed articles (1990 - June 2023). Despite their high mangrove extent, there was a paucity of studies from Myanmar, Bangladesh, and Papua New Guinea. The most frequently used sensor was Sentinel-2 MSI, accounting for 14.5 % of overall usage, followed by Landsat 8 OLI (11.5 %), ALOS-2 PALSAR-2 (7.3 %), ALOS PALSAR (7.2 %), Landsat 7 ETM+ (6.1 %), Sentinel-1 (6.7 %), Landsat 5 TM (5.5 %), SRTM DEM (5.5 %), and UAV-LiDAR (4.8 %). Although parametric methods like linear regression remain the most widely used, machine learning regression models such as Random Forest (RF) and eXtreme Gradient Boost (XGB) have become popular in recent years and have shown good accuracy. Among a variety of attributes estimated, below-ground mangrove blue carbon and the valuation of carbon stock were less studied. The variation in carbon sequestration potential as a result of location, species, and forest type was widely studied. To improve the accuracy of blue carbon measurements, standardized/coordinated and innovative methodologies accompanied by credible information and actionable data should be carried out. Technical monitoring (every 2-5 years) enhanced by remote sensing can provide accurate and precise data for sustainable mangrove management while opening ventures for voluntary carbon markets to benefit the environment and local livelihood in developing countries in the Asia-Pacific region.

2.
Nature ; 624(7990): 92-101, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37957399

RESUMO

Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system1. Remote-sensing estimates to quantify carbon losses from global forests2-5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced6 and satellite-derived approaches2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151-363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets.


Assuntos
Sequestro de Carbono , Carbono , Conservação dos Recursos Naturais , Florestas , Biodiversidade , Carbono/análise , Carbono/metabolismo , Conservação dos Recursos Naturais/estatística & dados numéricos , Conservação dos Recursos Naturais/tendências , Atividades Humanas , Recuperação e Remediação Ambiental/tendências , Desenvolvimento Sustentável/tendências , Aquecimento Global/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA