Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Drug Chem Toxicol ; 43(4): 429-434, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30208744

RESUMO

Highly active antiretroviral therapy (HAART) regimens are based on the use of nucleoside reverse transcriptase inhibitors (NRTIs), which are the main drugs used by patients infected with the human immunodeficiency virus (HIV). The use of NRTIs combinations has afforded clear clinical benefits to patients undergoing HAART. However, the combination of two NRTIs may increase the risk of genomic instability in comparison with the drugs administered individually. We analyzed the ability of zidovudine (AZT) and lamivudine (3TC), and the combination AZT +3TC to induce complex genomic alterations using the cytokinesis-block micronucleus (CBMN) assay in Chinese hamster ovary (CHO)-K1 cells. The 24-h cell treatment with individual NRTIs showed that AZT increased micronucleus frequencies and nucleoplasmic bridges (NPBs). No significant differences were observed for any parameters investigated after exposure of CHO-K1 cells to 3TC. The combination AZT +3TC significantly increased micronucleus frequencies. Analysis of interaction between these drugs suggested that antagonism occurs in all AZT +3TC concentrations. These results highlight the importance to investigate the genotoxic profile of NRTIs to develop safer intervention strategies in antiretroviral treatment protocols.


Assuntos
Fármacos Anti-HIV/toxicidade , Terapia Antirretroviral de Alta Atividade/efeitos adversos , Dano ao DNA , Lamivudina/toxicidade , Inibidores da Transcriptase Reversa/toxicidade , Zidovudina/toxicidade , Animais , Células CHO , Cricetulus , Lamivudina/administração & dosagem , Mutagênese , Mutação , Zidovudina/administração & dosagem
2.
Ecotoxicol Environ Saf ; 100: 282-6, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24238741

RESUMO

The water eutrophication process by phosphorus and nitrogen allows cyanobacteria blooms which promote, among other effects, the generation and release of the metabolite 2-methylisoborneol (2-MIB) in the environment. This substance has been shown to be recalcitrant to conventional water treatment, degrading water quality. Considering the limited number of studies on the biological effects of 2-MIB in eukaryotic organisms, the present study assessed the genotoxicity of 2-MIB using the in vitro comet assay and cytokinesis block-micronucleus (CBMN-Cytome) assay on Chinese Hamster Ovary (CHO) cells and the in vivo Drosophila melanogaster Somatic Mutation and Recombination Test (SMART). The results showed that 2-MIB (125, 250 and 500 µg/mL) was unable to induce gene and chromosome mutations or events associated with mitotic recombination in the SMART. Similarly, four different concentrations (7.5, 15, 30 and 60 µg/mL) of 2-MIB did not induce increments in frequencies of micronuclei, nuclear buds, and nucleoplasmatic bridges in the CBMN-Cytome assay. In the comet assay, the positive results were restricted to the highest dose, 60 µg/mL of 2-MIB. The results obtained may help evaluate the genotoxic profile of extracellular algal products.


Assuntos
Canfanos/toxicidade , Drosophila melanogaster/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Células CHO , Núcleo Celular/genética , Aberrações Cromossômicas , Ensaio Cometa , Cricetinae , Cricetulus , Cianobactérias/química , Testes para Micronúcleos , Odorantes , Paladar , Água/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA