Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Geohealth ; 8(4): e2023GH000982, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38560558

RESUMO

Prescribed fires (fires intentionally set for mitigation purposes) produce pollutants, which have negative effects on human and animal health. One of the pollutants produced from fires is fine particulate matter (PM2.5). The Flint Hills (FH) region of Kansas experiences extensive prescribed burning each spring (March-May). Smoke from prescribed fires is often understudied due to a lack of monitoring in the rural regions where prescribed burning occurs, as well as the short duration and small size of the fires. Our goal was to attribute PM2.5 concentrations to the prescribed burning in the FH. To determine PM2.5 increases from local burning, we used low-cost PM2.5 sensors (PurpleAir) and satellite observations. The FH were also affected by smoke transported from fires in other regions during 2022. We separated the transported smoke from smoke from fires in eastern Kansas. Based on data from the PurpleAir sensors, we found the 24-hr median PM2.5 to increase by 3.0-5.3 µg m-3 (based on different estimates) on days impacted by smoke from fires in the eastern Kansas region compared to days unimpacted by smoke. The FH region was the most impacted by smoke PM2.5 compared to other regions of Kansas, as observed in satellite products and in situ measurements. Additionally, our study found that hourly PM2.5 estimates from a satellite-derived product aligned with our ground-based measurements. Satellite-derived products are useful in rural areas like the FH, where monitors are scarce, providing important PM2.5 estimates.

3.
Geohealth ; 7(9): e2023GH000816, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37654974

RESUMO

Recent studies have identified inequality in the distribution of air pollution attributable health impacts, but to our knowledge this has not been examined in Canadian cities. We evaluated the extent and sources of inequality in air pollution attributable mortality at the census tract (CT) level in seven of Canada's largest cities. We first regressed fine particulate matter (PM2.5) and nitrogen dioxide (NO2) attributable mortality against the neighborhood (CT) level prevalence of age 65 and older, low income, low educational attainment, and identification as an Indigenous (First Nations, Métis, Inuit) or Black person, accounting for spatial autocorrelation. We next examined the distribution of baseline mortality rates, PM2.5 and NO2 concentrations, and attributable mortality by neighborhood (CT) level prevalence of these characteristics, calculating the concentration index, Atkinson index, and Gini coefficient. Finally, we conducted a counterfactual analysis of the impact of reducing baseline mortality rates and air pollution concentrations on inequality in air pollution attributable mortality. Regression results indicated that CTs with a higher prevalence of low income and Indigenous identity had significantly higher air pollution attributable mortality. Concentration index, Atkinson index, and Gini coefficient values revealed different degrees of inequality among the cities. Counterfactual analysis indicated that inequality in air pollution attributable mortality tended to be driven more by baseline mortality inequalities than exposure inequalities. Reducing inequality in air pollution attributable mortality requires reducing disparities in both baseline mortality and air pollution exposure.

4.
Environ Sci Technol ; 57(17): 6835-6843, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37074132

RESUMO

There is increasing evidence linking long-term fine particulate matter (PM2.5) exposure to negative health effects. However, the relative influence of each component of PM2.5 on health risk is poorly understood. In a cohort study in the contiguous United States between 2000 and 2017, we examined the effect of long-term exposure to PM2.5 main components and all-cause mortality in older adults who had to be at least 65 years old and enrolled in Medicare. We estimated the yearly mean concentrations of six key PM2.5 compounds, including black carbon (BC), organic matter (OM), soil dust (DUST), nitrate (NO3-), sulfate (SO42-), and ammonium (NH4+), using two independently sourced well-validated prediction models. We applied Cox proportional hazard models to evaluate the hazard ratios for mortality and penalized splines for assessing potential nonlinear concentration-response associations. Results suggested that increased exposure to PM2.5 mass and its six main constituents were significantly linked to elevated all-cause mortality. All components showed linear concentration-response relationships in the low exposure concentration ranges. Our research indicates that long-term exposure to PM2.5 mass and its essential compounds are strongly connected to increased mortality risk. Reductions of fossil fuel burning may yield significant air quality and public health benefit.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Idoso , Humanos , Estados Unidos , Estudos de Coortes , Exposição Ambiental , Medicare , Material Particulado/análise , Poluição do Ar/análise , Poeira , Poluentes Atmosféricos/análise
5.
Proc Natl Acad Sci U S A ; 120(1): e2211282119, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574646

RESUMO

Growing evidence suggests that fine particulate matter (PM2.5) likely increases the risks of dementia, yet little is known about the relative contributions of different constituents. Here, we conducted a nationwide population-based cohort study (2000 to 2017) by integrating the Medicare Chronic Conditions Warehouse database and two independently sourced datasets of high-resolution PM2.5 major chemical composition, including black carbon (BC), organic matter (OM), nitrate (NO3-), sulfate (SO42-), ammonium (NH4+), and soil dust (DUST). To investigate the impact of long-term exposure to PM2.5 constituents on incident all-cause dementia and Alzheimer's disease (AD), hazard ratios for dementia and AD were estimated using Cox proportional hazards models, and penalized splines were used to evaluate potential nonlinear concentration-response (C-R) relationships. Results using two exposure datasets consistently indicated higher rates of incident dementia and AD for an increased exposure to PM2.5 and its major constituents. An interquartile range increase in PM2.5 mass was associated with a 6 to 7% increase in dementia incidence and a 9% increase in AD incidence. For different PM2.5 constituents, associations remained significant for BC, OM, SO42-, and NH4+ for both end points (even after adjustments of other constituents), among which BC and SO42- showed the strongest associations. All constituents had largely linear C-R relationships in the low exposure range, but most tailed off at higher exposure concentrations. Our findings suggest that long-term exposure to PM2.5 is significantly associated with higher rates of incident dementia and AD and that SO42-, BC, and OM related to traffic and fossil fuel combustion might drive the observed associations.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Demência , Humanos , Idoso , Estados Unidos/epidemiologia , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Estudos de Coortes , Medicare , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Material Particulado/efeitos adversos , Material Particulado/análise , Poeira , Demência/induzido quimicamente , Demência/epidemiologia , Exposição Ambiental/efeitos adversos , China
6.
Sci Bull (Beijing) ; 67(4): 437-444, 2022 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-36546095

RESUMO

Atmospheric transport of fine particulate matter (PM2.5), the leading environmental risk factor for public health, is estimated to exert substantial transboundary effects at present. During the past several decades, human-produced pollutant emissions have undergone drastic and regionally distinctive changes, yet it remains unclear about the resulting global transboundary health impacts. Here we show that between 1950 and 2014, global anthropogenic PM2.5 has led to 185.7 million premature deaths cumulatively, including about 14% from transboundary pollution. Among four country groups at different affluence levels, on a basis of per capita contribution to transboundary mortality, a richer region tends to exert severer cumulative health externality, with the poorest bearing the worst net externality after contrasting import and export of pollution mortality. The temporal changes in transboundary mortality and cross-regional inequality are substantial. Effort to reduce PM2.5-related transboundary mortality should seek international collaborative strategies that account for historical responsibility and inequality.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Humanos , Poluentes Atmosféricos/efeitos adversos , Material Particulado/efeitos adversos , Mortalidade Prematura , Poluição Ambiental
7.
Geohealth ; 6(12): e2022GH000672, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36467256

RESUMO

We investigate socioeconomic disparities in air quality at public schools in the contiguous US using high resolution estimates of fine particulate matter (PM2.5) and nitrogen dioxide (NO2) concentrations. We find that schools with higher proportions of people of color (POC) and students eligible for the federal free or reduced lunch program, a proxy for poverty level, are associated with higher pollutant concentrations. For example, we find that the median annual NO2 concentration for White students, nationally, was 7.7 ppbv, compared to 9.2 ppbv for Black and African American students. Statewide and regional disparities in pollutant concentrations across racial, ethnic, and poverty groups are consistent with nationwide results, where elevated NO2 concentrations were associated with schools with higher proportions of POC and higher levels of poverty. Similar, though smaller, differences were found in PM2.5 across racial and ethnic groups in most states. Racial, ethnic, and economic segregation across the rural-urban divide is likely an important factor in pollution disparities at US public schools. We identify distinct regional patterns of disparities, highlighting differences between California, New York, and Florida. Finally, we highlight that disparities exist not only across urban and non-urban lines but also within urban environments.

8.
Environ Int ; 158: 106969, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34741960

RESUMO

BACKGROUND: Long-term exposure to fine particulate matter (PM2.5) mass has been associated with adverse health effects. However, the health effects of PM2.5 components have been less studied. There is a pressing need to better understand the relative contribution of components of PM2.5, which can lay the scientific basis for designing effective policies and targeted interventions. METHODS: We conducted a population-based cohort study, comprising all Medicare enrollees aged 65 or older in the southeastern United States from 2000 to 2016, to explore the associations between long-term exposure to PM2.5 major components and all-cause mortality among the elderly. Based on well-validated prediction models, we estimated ZIP code-level annual mean concentrations for five major PM2.5 components, including black carbon (BC), nitrate (NIT), organic matter (OM), sulfate (SO4), and soil particles. Data were analyzed using Cox proportional hazards models, adjusting for potential confounders. RESULTS: The cohort comprised 13,590,387 Medicare enrollees and a total of 107,191,652 person-years. In single-component models, all five major PM2.5 components were significantly associated with elevated all-cause mortality. The hazard ratios (HR) per interquartile range (IQR) increase in exposure were 1.027 (95% CI: 1.025-1.030), 1.012 (95% CI: 1.010-1.013), 1.018 (95% CI: 1.017-1.020), 1.021 (95% CI: 1.017-1.024), and 1.004 (95% CI: 1.003-1.006) for BC, NIT, OM, SO4, and soil particles, respectively. While the effect estimate of soil component was statistically significant, it is much smaller than those of combustion-related components. CONCLUSION: Our study provides epidemiological evidence that long-term exposure to major PM2.5 components is significantly associated with elevated mortality.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Idoso , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/análise , Poluição do Ar/estatística & dados numéricos , Estudos de Coortes , Exposição Ambiental/análise , Exposição Ambiental/estatística & dados numéricos , Humanos , Medicare , Material Particulado/análise , Material Particulado/toxicidade , Sudeste dos Estados Unidos/epidemiologia , Estados Unidos/epidemiologia
9.
Geohealth ; 5(11): e2021GH000431, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34765851

RESUMO

Air pollution levels are uneven within cities, contributing to persistent health disparities between neighborhoods and population sub-groups. Highly spatially resolved information on pollution levels and disease rates is necessary to characterize inequities in air pollution exposure and related health risks. We leverage recent advances in deriving surface pollution levels from satellite remote sensing and granular data in disease rates for one city, Washington, DC, to assess intra-urban heterogeneity in fine particulate matter (PM2.5)- attributable mortality and morbidity. We estimate PM2.5-attributable cases of all-cause mortality, chronic obstructive pulmonary disease, ischemic heart disease, lung cancer, stroke, and asthma emergency department (ED) visits using epidemiologically derived health impact functions. Data inputs include satellite-derived annual mean surface PM2.5 concentrations; age-resolved population estimates; and statistical neighborhood-, zip code- and ward-scale disease counts. We find that PM2.5 concentrations and associated health burdens have decreased in DC between 2000 and 2018, from approximately 240 to 120 cause-specific deaths and from 40 to 30 asthma ED visits per year (between 2014 and 2018). However, remaining PM2.5-attributable health risks are unevenly and inequitably distributed across the District. Higher PM2.5-attributable disease burdens were found in neighborhoods with larger proportions of people of color, lower household income, and lower educational attainment. Our study adds to the growing body of literature documenting the inequity in air pollution exposure levels and pollution health risks between population sub-groups, and highlights the need for both high-resolution disease rates and concentration estimates for understanding intra-urban disparities in air pollution-related health risks.

10.
Epidemiology ; 31(2): 168-176, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31693516

RESUMO

BACKGROUND: The temporal and spatial scales of exposure assessment may influence observed associations between fine particulate air pollution (PM2.5) and mortality, but few studies have systematically examined this question. METHODS: We followed 2.4 million adults in the 2001 Canadian Census Health and Environment Cohort for nonaccidental and cause-specific mortality between 2001 and 2011. We assigned PM2.5 exposures to residential locations using satellite-based estimates and compared three different temporal moving averages (1, 3, and 8 years) and three spatial scales (1, 5, and 10 km) of exposure assignment. In addition, we examined different spatial scales based on age, employment status, and urban/rural location, and adjustment for O3, NO2, or their combined oxidant capacity (Ox). RESULTS: In general, longer moving averages resulted in stronger associations between PM2.5 and mortality. For nonaccidental mortality, we observed a hazard ratio of 1.11 (95% CI = 1.08, 1.13) for the 1-year moving average compared with 1.23 (95% CI = 1.20, 1.27) for the 8-year moving average. Respiratory and lung cancer mortality were most sensitive to the spatial scale of exposure assessment with stronger associations observed at smaller spatial scales. Adjustment for oxidant gases attenuated associations between PM2.5 and cardiovascular mortality and strengthened associations with lung cancer. Despite these variations, PM2.5 was associated with increased mortality in nearly all of the models examined. CONCLUSIONS: These findings support a relationship between outdoor PM2.5 and mortality at low concentrations and highlight the importance of longer-exposure windows, more spatially resolved exposure metrics, and adjustment for oxidant gases in characterizing this relationship.


Assuntos
Poluição do Ar , Exposição Ambiental , Mortalidade , Material Particulado , Adulto , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Canadá/epidemiologia , Estudos de Coortes , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Humanos , Mortalidade/tendências , Material Particulado/efeitos adversos , Material Particulado/análise , Análise Espaço-Temporal
11.
Nat Commun ; 10(1): 4947, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31666528

RESUMO

In a globalized economy, production of goods can be disrupted by trade disputes. Yet the resulting impacts on carbon dioxide emissions and ambient particulate matter (PM2.5) related premature mortality are unclear. Here we show that in contrast to a free trade world, with the emission intensity in each sector unchanged, an extremely anti-trade scenario with current tariffs plus an additional 25% tariff on each traded product would reduce the global export volume by 32.5%, gross domestic product by 9.0%, carbon dioxide by 6.3%, and PM2.5-related mortality by 4.1%. The respective impacts would be substantial for the United States, Western Europe and China. A freer trade scenario would increase global carbon dioxide emission and air pollution due to higher levels of production, especially in developing regions with relatively high emission intensities. Global collaborative actions to reduce emission intensities in developing regions could help achieve an economic-environmental win-win state through globalization.


Assuntos
Dióxido de Carbono , Comércio , Internacionalidade , Mortalidade Prematura , Material Particulado , Impostos , Carbono , China , Dissidências e Disputas , Europa (Continente) , Produto Interno Bruto , Humanos , Estados Unidos
12.
Environ Sci Technol ; 52(21): 12445-12455, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30277062

RESUMO

Australia has relatively diverse sources and low concentrations of ambient fine particulate matter (<2.5 µm, PM2.5). Few comparable regions are available to evaluate the utility of continental-scale land-use regression (LUR) models including global geophysical estimates of PM2.5, derived by relating satellite-observed aerosol optical depth to ground-level PM2.5 ("SAT-PM2.5"). We aimed to determine the validity of such satellite-based LUR models for PM2.5 in Australia. We used global SAT-PM2.5 estimates (∼10 km grid) and local land-use predictors to develop four LUR models for year-2015 (two satellite-based, two nonsatellite-based). We evaluated model performance at 51 independent monitoring sites not used for model development. An LUR model that included the SAT-PM2.5 predictor variable (and six others) explained the most spatial variability in PM2.5 (adjusted R2 = 0.63, RMSE (µg/m3 [%]): 0.96 [14%]). Performance decreased modestly when evaluated (evaluation R2 = 0.52, RMSE: 1.15 [16%]). The evaluation R2 of the SAT-PM2.5 estimate alone was 0.26 (RMSE: 3.97 [56%]). SAT-PM2.5 estimates improved LUR model performance, while local land-use predictors increased the utility of global SAT-PM2.5 estimates, including enhanced characterization of within-city gradients. Our findings support the validity of continental-scale satellite-based LUR modeling for PM2.5 exposure assessment in Australia.


Assuntos
Poluentes Atmosféricos , Austrália , Cidades , Monitoramento Ambiental , Material Particulado
13.
Proc Natl Acad Sci U S A ; 115(38): 9592-9597, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30181279

RESUMO

Exposure to ambient fine particulate matter (PM2.5) is a major global health concern. Quantitative estimates of attributable mortality are based on disease-specific hazard ratio models that incorporate risk information from multiple PM2.5 sources (outdoor and indoor air pollution from use of solid fuels and secondhand and active smoking), requiring assumptions about equivalent exposure and toxicity. We relax these contentious assumptions by constructing a PM2.5-mortality hazard ratio function based only on cohort studies of outdoor air pollution that covers the global exposure range. We modeled the shape of the association between PM2.5 and nonaccidental mortality using data from 41 cohorts from 16 countries-the Global Exposure Mortality Model (GEMM). We then constructed GEMMs for five specific causes of death examined by the global burden of disease (GBD). The GEMM predicts 8.9 million [95% confidence interval (CI): 7.5-10.3] deaths in 2015, a figure 30% larger than that predicted by the sum of deaths among the five specific causes (6.9; 95% CI: 4.9-8.5) and 120% larger than the risk function used in the GBD (4.0; 95% CI: 3.3-4.8). Differences between the GEMM and GBD risk functions are larger for a 20% reduction in concentrations, with the GEMM predicting 220% higher excess deaths. These results suggest that PM2.5 exposure may be related to additional causes of death than the five considered by the GBD and that incorporation of risk information from other, nonoutdoor, particle sources leads to underestimation of disease burden, especially at higher concentrations.


Assuntos
Poluentes Atmosféricos/toxicidade , Exposição Ambiental/efeitos adversos , Carga Global da Doença/estatística & dados numéricos , Doenças não Transmissíveis/mortalidade , Material Particulado/toxicidade , Poluição do Ar/efeitos adversos , Teorema de Bayes , Estudos de Coortes , Saúde Global/estatística & dados numéricos , Humanos , Modelos de Riscos Proporcionais , Medição de Risco , Fatores de Tempo
14.
Environ Sci Technol ; 52(16): 9069-9078, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-29957991

RESUMO

Air pollution is a leading global disease risk factor. Tracking progress (e.g., for Sustainable Development Goals) requires accurate, spatially resolved, routinely updated exposure estimates. A Bayesian hierarchical model was developed to estimate annual average fine particle (PM2.5) concentrations at 0.1° × 0.1° spatial resolution globally for 2010-2016. The model incorporated spatially varying relationships between 6003 ground measurements from 117 countries, satellite-based estimates, and other predictors. Model coefficients indicated larger contributions from satellite-based estimates in countries with low monitor density. Within and out-of-sample cross-validation indicated improved predictions of ground measurements compared to previous (Global Burden of Disease 2013) estimates (increased within-sample R2 from 0.64 to 0.91, reduced out-of-sample, global population-weighted root mean squared error from 23 µg/m3 to 12 µg/m3). In 2016, 95% of the world's population lived in areas where ambient PM2.5 levels exceeded the World Health Organization 10 µg/m3 (annual average) guideline; 58% resided in areas above the 35 µg/m3 Interim Target-1. Global population-weighted PM2.5 concentrations were 18% higher in 2016 (51.1 µg/m3) than in 2010 (43.2 µg/m3), reflecting in particular increases in populous South Asian countries and from Saharan dust transported to West Africa. Concentrations in China were high (2016 population-weighted mean: 56.4 µg/m3) but stable during this period.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , África do Norte , África Ocidental , Teorema de Bayes , China , Carga Global da Doença , Material Particulado
15.
Lancet ; 389(10082): 1907-1918, 2017 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-28408086

RESUMO

BACKGROUND: Exposure to ambient air pollution increases morbidity and mortality, and is a leading contributor to global disease burden. We explored spatial and temporal trends in mortality and burden of disease attributable to ambient air pollution from 1990 to 2015 at global, regional, and country levels. METHODS: We estimated global population-weighted mean concentrations of particle mass with aerodynamic diameter less than 2·5 µm (PM2·5) and ozone at an approximate 11 km × 11 km resolution with satellite-based estimates, chemical transport models, and ground-level measurements. Using integrated exposure-response functions for each cause of death, we estimated the relative risk of mortality from ischaemic heart disease, cerebrovascular disease, chronic obstructive pulmonary disease, lung cancer, and lower respiratory infections from epidemiological studies using non-linear exposure-response functions spanning the global range of exposure. FINDINGS: Ambient PM2·5 was the fifth-ranking mortality risk factor in 2015. Exposure to PM2·5 caused 4·2 million (95% uncertainty interval [UI] 3·7 million to 4·8 million) deaths and 103·1 million (90·8 million 115·1 million) disability-adjusted life-years (DALYs) in 2015, representing 7·6% of total global deaths and 4·2% of global DALYs, 59% of these in east and south Asia. Deaths attributable to ambient PM2·5 increased from 3·5 million (95% UI 3·0 million to 4·0 million) in 1990 to 4·2 million (3·7 million to 4·8 million) in 2015. Exposure to ozone caused an additional 254 000 (95% UI 97 000-422 000) deaths and a loss of 4·1 million (1·6 million to 6·8 million) DALYs from chronic obstructive pulmonary disease in 2015. INTERPRETATION: Ambient air pollution contributed substantially to the global burden of disease in 2015, which increased over the past 25 years, due to population ageing, changes in non-communicable disease rates, and increasing air pollution in low-income and middle-income countries. Modest reductions in burden will occur in the most polluted countries unless PM2·5 values are decreased substantially, but there is potential for substantial health benefits from exposure reduction. FUNDING: Bill & Melinda Gates Foundation and Health Effects Institute.


Assuntos
Poluição do Ar/efeitos adversos , Transtornos Cerebrovasculares/epidemiologia , Exposição Ambiental/efeitos adversos , Carga Global da Doença , Cardiopatias/epidemiologia , Doenças Respiratórias/epidemiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Anos de Vida Ajustados por Qualidade de Vida , Adulto Jovem
16.
Health Rep ; 28(3): 9-16, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28295129

RESUMO

BACKGROUND: Exposure to ambient fine particulate matter (PM2.5) has been associated with a greater risk of non-accidental, cardiovascular and respiratory mortality in Canada. Research based on Canadian cohorts suggests that exposure to PM2.5 varies by demographic and socioeconomic characteristics. Studies of NO2, another pollutant, indicate that persons of lower socioeconomic status and some visible minority groups have greater exposure in urban centres. DATA AND METHODS: National residential PM2.5 was estimated from a ~1 km² spatial layer for respondents to the 2006 Census long-form questionnaire. Weighted PM2.5 estimates from personal-level estimates were determined for white, Aboriginal, visible minority and immigrant populations, as well as for socioeconomic groups (household income, educational attainment) and stratified by urban core, urban fringe and rural residence. Descriptive statistics were provided for selected comparisons. RESULTS: In Canada, PM2.5 exposure was 1.61 µg/m³ higher for visible minority (versus white) populations, and 1.55 µg/m³ higher for immigrants (versus non-immigrants). When the relatively high percentages of these groups in large cities were taken into account, exposure differences in urban cores were much smaller. Exposure among urban immigrants did not decrease substantially with time since immigration (< 0.5 µg/m³ between any two years). In urban cores, residents of low-income households had marginally higher exposure (0.56 µg/m³) than did people who were not in low-income households. INTERPRETATION: Differences between specific population groups in exposure to PM2.5 are due, at least in part, to higher percentages of these groups living in urban cores where air pollution levels are elevated.


Assuntos
Poluição do Ar/análise , Exposição Ambiental/análise , Material Particulado/análise , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Poluentes Atmosféricos/análise , Canadá , Censos , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Fatores Socioeconômicos , Adulto Jovem
17.
Environ Sci Technol ; 50(1): 79-88, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26595236

RESUMO

Exposure to ambient air pollution is a major risk factor for global disease. Assessment of the impacts of air pollution on population health and evaluation of trends relative to other major risk factors requires regularly updated, accurate, spatially resolved exposure estimates. We combined satellite-based estimates, chemical transport model simulations, and ground measurements from 79 different countries to produce global estimates of annual average fine particle (PM2.5) and ozone concentrations at 0.1° × 0.1° spatial resolution for five-year intervals from 1990 to 2010 and the year 2013. These estimates were applied to assess population-weighted mean concentrations for 1990-2013 for each of 188 countries. In 2013, 87% of the world's population lived in areas exceeding the World Health Organization Air Quality Guideline of 10 µg/m(3) PM2.5 (annual average). Between 1990 and 2013, global population-weighted PM2.5 increased by 20.4% driven by trends in South Asia, Southeast Asia, and China. Decreases in population-weighted mean concentrations of PM2.5 were evident in most high income countries. Population-weighted mean concentrations of ozone increased globally by 8.9% from 1990-2013 with increases in most countries-except for modest decreases in North America, parts of Europe, and several countries in Southeast Asia.


Assuntos
Poluição do Ar/análise , Efeitos Psicossociais da Doença , Exposição Ambiental/análise , Internacionalidade , Humanos , Ozônio/análise , Tamanho da Partícula , Material Particulado/análise , Estações do Ano
18.
Environ Health Perspect ; 123(2): 135-43, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25343779

RESUMO

BACKGROUND: More than a decade of satellite observations offers global information about the trend and magnitude of human exposure to fine particulate matter (PM2.5). OBJECTIVE: In this study, we developed improved global exposure estimates of ambient PM2.5 mass and trend using PM2.5 concentrations inferred from multiple satellite instruments. METHODS: We combined three satellite-derived PM2.5 sources to produce global PM2.5 estimates at about 10 km × 10 km from 1998 through 2012. For each source, we related total column retrievals of aerosol optical depth to near-ground PM2.5 using the GEOS-Chem chemical transport model to represent local aerosol optical properties and vertical profiles. We collected 210 global ground-based PM2.5 observations from the literature to evaluate our satellite-based estimates with values measured in areas other than North America and Europe. RESULTS: We estimated that global population-weighted ambient PM2.5 concentrations increased 0.55 µg/m3/year (95% CI: 0.43, 0.67) (2.1%/year; 95% CI: 1.6, 2.6) from 1998 through 2012. Increasing PM2.5 in some developing regions drove this global change, despite decreasing PM2.5 in some developed regions. The estimated proportion of the population of East Asia living above the World Health Organization (WHO) Interim Target-1 of 35 µg/m3 increased from 51% in 1998-2000 to 70% in 2010-2012. In contrast, the North American proportion above the WHO Air Quality Guideline of 10 µg/m3 fell from 62% in 1998-2000 to 19% in 2010-2012. We found significant agreement between satellite-derived estimates and ground-based measurements outside North America and Europe (r = 0.81; n = 210; slope = 0.68). The low bias in satellite-derived estimates suggests that true global concentrations could be even greater. CONCLUSIONS: Satellite observations provide insight into global long-term changes in ambient PM2.5 concentrations. Satellite-derived estimates and ground-based PM2.5 observations from this study are available for public use.


Assuntos
Poluentes Atmosféricos/análise , Exposição Ambiental/estatística & dados numéricos , Material Particulado/análise , Imagens de Satélites , Poluição do Ar/estatística & dados numéricos , Exposição Ambiental/análise , Monitoramento Ambiental , Humanos , Tamanho da Partícula
19.
Environ Sci Technol ; 48(22): 13060-8, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25343705

RESUMO

Epidemiologic and health impact studies are inhibited by the paucity of global, long-term measurements of the chemical composition of fine particulate matter. We inferred PM2.5 chemical composition at 0.1° × 0.1° spatial resolution for 2004-2008 by combining aerosol optical depth retrieved from the MODIS and MISR satellite instruments, with coincident profile and composition information from the GEOS-Chem global chemical transport model. Evaluation of the satellite-model PM2.5 composition data set with North American in situ measurements indicated significant spatial agreement for secondary inorganic aerosol, particulate organic mass, black carbon, mineral dust, and sea salt. We found that global population-weighted PM2.5 concentrations were dominated by particulate organic mass (11.9 ± 7.3 µg/m(3)), secondary inorganic aerosol (11.1 ± 5.0 µg/m(3)), and mineral dust (11.1 ± 7.9 µg/m(3)). Secondary inorganic PM2.5 concentrations exceeded 30 µg/m(3) over East China. Sensitivity simulations suggested that population-weighted ambient PM2.5 from biofuel burning (11 µg/m(3)) could be almost as large as from fossil fuel combustion sources (17 µg/m(3)). These estimates offer information about global population exposure to the chemical components and sources of PM2.5.


Assuntos
Exposição Ambiental/análise , Material Particulado/análise , Aerossóis/análise , Poluentes Atmosféricos/análise , China , Modelos Teóricos , América do Norte , Fenômenos Ópticos , Tamanho da Partícula
20.
Environ Health ; 11: 22, 2012 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-22475580

RESUMO

BACKGROUND: Few epidemiological studies of air pollution have used residential histories to develop long-term retrospective exposure estimates for multiple ambient air pollutants and vehicle and industrial emissions. We present such an exposure assessment for a Canadian population-based lung cancer case-control study of 8353 individuals using self-reported residential histories from 1975 to 1994. We also examine the implications of disregarding and/or improperly accounting for residential mobility in long-term exposure assessments. METHODS: National spatial surfaces of ambient air pollution were compiled from recent satellite-based estimates (for PM2.5 and NO2) and a chemical transport model (for O3). The surfaces were adjusted with historical annual air pollution monitoring data, using either spatiotemporal interpolation or linear regression. Model evaluation was conducted using an independent ten percent subset of monitoring data per year. Proximity to major roads, incorporating a temporal weighting factor based on Canadian mobile-source emission estimates, was used to estimate exposure to vehicle emissions. A comprehensive inventory of geocoded industries was used to estimate proximity to major and minor industrial emissions. RESULTS: Calibration of the national PM2.5 surface using annual spatiotemporal interpolation predicted historical PM2.5 measurement data best (R2 = 0.51), while linear regression incorporating the national surfaces, a time-trend and population density best predicted historical concentrations of NO2 (R2 = 0.38) and O3 (R2 = 0.56). Applying the models to study participants residential histories between 1975 and 1994 resulted in mean PM2.5, NO2 and O3 exposures of 11.3 µg/m3 (SD = 2.6), 17.7 ppb (4.1), and 26.4 ppb (3.4) respectively. On average, individuals lived within 300 m of a highway for 2.9 years (15% of exposure-years) and within 3 km of a major industrial emitter for 6.4 years (32% of exposure-years). Approximately 50% of individuals were classified into a different PM2.5, NO2 and O3 exposure quintile when using study entry postal codes and spatial pollution surfaces, in comparison to exposures derived from residential histories and spatiotemporal air pollution models. Recall bias was also present for self-reported residential histories prior to 1975, with cases recalling older residences more often than controls. CONCLUSIONS: We demonstrate a flexible exposure assessment approach for estimating historical air pollution concentrations over large geographical areas and time-periods. In addition, we highlight the importance of including residential histories in long-term exposure assessments. For submission to: Environmental Health.


Assuntos
Poluição do Ar/análise , Exposição Ambiental/análise , Monitoramento Ambiental/métodos , Neoplasias Pulmonares/etiologia , Poluição do Ar/efeitos adversos , Canadá/epidemiologia , Estudos de Casos e Controles , Demografia , Exposição Ambiental/efeitos adversos , Monitoramento Epidemiológico , Humanos , Neoplasias Pulmonares/epidemiologia , Modelos Teóricos , Óxido Nítrico/efeitos adversos , Óxido Nítrico/análise , Material Particulado/efeitos adversos , Material Particulado/análise , Estudos Retrospectivos , Medição de Risco , Astronave , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA