Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Int J Radiat Oncol Biol Phys ; 108(4): 1055-1062, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32629078

RESUMO

PURPOSE: In a randomized focal dose escalation radiation therapy trial for prostate cancer (FLAME), up to 95 Gy was prescribed to the tumor in the dose-escalated arm, with 77 Gy to the entire prostate in both arms. As dose constraints to organs at risk had priority over dose escalation and suboptimal planning could occur, we investigated how well the dose to the tumor was boosted. We developed an anatomy-based prediction model to identify plans with suboptimal tumor dose and performed replanning to validate our model. METHODS AND MATERIALS: We derived dose-volume parameters from planned dose distributions of 539 FLAME trial patients in 4 institutions and compared them between both arms. In the dose-escalated arm, we determined overlap volume histograms and derived features representing patient anatomy. We predicted tumor D98% with a linear regression on anatomic features and performed replanning on 21 plans. RESULTS: In the dose-escalated arm, the median tumor D50% and D98% were 93.0 and 84.7 Gy, and 99% of the tumors had a dose escalation greater than 82.4 Gy (107% of 77 Gy). In both arms organs at risk constraints were met. Five out of 73 anatomic features were found to be predictive for tumor D98%. Median predicted tumor D98% was 4.4 Gy higher than planned D98%. Upon replanning, median tumor D98% increased by 3.0 Gy. A strong correlation between predicted increase in D98% and realized increase upon replanning was found (ρ = 0.86). CONCLUSIONS: Focal dose escalation in prostate cancer was feasible with a dose escalation to 99% of the tumors. Replanning resulted in an increased tumor dose that correlated well with the prediction model. The model was able to identify tumors on which a higher boost dose could be planned. The model has potential as a quality assessment tool in focal dose escalated treatment plans.


Assuntos
Órgãos em Risco/efeitos da radiação , Neoplasias da Próstata/radioterapia , Intervalo Livre de Doença , Estudos de Viabilidade , Humanos , Bases de Conhecimento , Modelos Lineares , Imageamento por Ressonância Magnética , Masculino , Modelos Teóricos , Recidiva Local de Neoplasia/sangue , Recidiva Local de Neoplasia/mortalidade , Órgãos em Risco/diagnóstico por imagem , Próstata , Antígeno Prostático Específico/sangue , Neoplasias da Próstata/sangue , Neoplasias da Próstata/mortalidade , Neoplasias da Próstata/patologia , Lesões por Radiação/prevenção & controle , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Reto , Reprodutibilidade dos Testes , Glândulas Seminais , Tomografia Computadorizada por Raios X , Carga Tumoral/efeitos da radiação
2.
Mol Oncol ; 14(7): 1500-1513, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32124546

RESUMO

Technology has a pivotal role in the continuous development of radiotherapy. The long road toward modern 'high-tech' radiation oncology has been studded with discoveries and technological innovations that resulted from the interaction of various disciplines. In the last decades, a dramatic technology-driven revolution has hugely improved the capability of accurately and safely delivering complex-shaped dose distributions. This has contributed to many clinical improvements, such as the successful management of lung cancer and oligometastatic disease through stereotactic body radiotherapy. Technology-driven research is an active and lively field with promising potential in several domains, including image guidance, adaptive radiotherapy, integration of artificial intelligence, heavy-particle therapy, and 'flash' ultra-high dose-rate radiotherapy. The evolution toward personalized Oncology will deeply influence technology-driven research, aiming to integrate predictive models and omics analyses into fast and efficient solutions to deliver the best treatment for each single patient. Personalized radiation oncology will need affordable technological solutions for middle-/low-income countries, as these are expected to experience the highest increase of cancer incidence and mortality. Moreover, technology solutions for automation of commissioning, quality assurance, safety tests, image segmentation, and plan optimization will be required. Although a large fraction of cancer patients receive radiotherapy, this is certainly not reflected in the worldwide budget for radiotherapy research. Differently from the pharmaceutical companies-driven research, resources for research in radiotherapy are highly limited to equipment vendors, who can, in turn, initiate a limited number of collaborations with academic research centers. Thus, enhancement of investments in technology-driven radiotherapy research via public funds, national governments, and the European Union would have a crucial societal impact. It would allow for radiotherapy to further strengthen its role as a highly effective and cost-efficient cancer treatment modality, and it could facilitate a rapid and equalitarian large-scale transfer of technology to clinic, with direct impact on patient care.


Assuntos
Pesquisa Biomédica , Invenções , Radioterapia , Inteligência Artificial , Big Data , Humanos , Medicina de Precisão
3.
Clin Transl Radiat Oncol ; 13: 19-23, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30386824

RESUMO

BACKGROUND: Current standard radiotherapy for oropharynx cancer (OPC) is associated with high rates of severe toxicities, shown to adversely impact patients' quality of life. Given excellent outcomes of human papilloma virus (HPV)-associated OPC and long-term survival of these typically young patients, treatment de-intensification aimed at improving survivorship while maintaining excellent disease control is now a central concern. The recent implementation of magnetic resonance image - guided radiotherapy (MRgRT) systems allows for individual tumor response assessment during treatment and offers possibility of personalized dose-reduction. In this 2-stage Bayesian phase II study, we propose to examine weekly radiotherapy dose-adaptation based on magnetic resonance imaging (MRI) evaluated tumor response. Individual patient's plan will be designed to optimize dose reduction to organs at risk and minimize locoregional failure probability based on serial MRI during RT. Our primary aim is to assess the non-inferiority of MRgRT dose adaptation for patients with low risk HPV-associated OPC compared to historical control, as measured by Bayesian posterior probability of locoregional control (LRC). METHODS: Patients with T1-2 N0-2b (as per AJCC 7th Edition) HPV-positive OPC, with lymph node <3 cm and <10 pack-year smoking history planned for curative radiotherapy alone to a dose of 70 Gy in 33 fractions will be eligible. All patients will undergo pre-treatment MRI and at least weekly intra-treatment MRI. Patients undergoing MRgRT will have weekly adaptation of high dose planning target volume based on gross tumor volume response. The stage 1 of this study will enroll 15 patients to MRgRT dose adaptation. If LRC at 6 months with MRgRT dose adaptation is found sufficiently safe as per the Bayesian model, stage 2 of the protocol will expand enrollment to an additional 60 patients, randomized to either MRgRT or standard IMRT. DISCUSSION: Multiple methods for safe treatment de-escalation in patients with HPV-positive OPC are currently being studied. By leveraging the ability of advanced MRI techniques to visualize tumor and soft tissues through the course of treatment, this protocol proposes a workflow for safe personalized radiation dose-reduction in good responders with radiosensitive tumors, while ensuring tumoricidal dose to more radioresistant tumors. MRgRT dose adaptation could translate in reduced long term radiation toxicities and improved survivorship while maintaining excellent LRC outcomes in favorable OPC. TRIAL REGISTRATION: ClinicalTrials.gov ID: NCT03224000; Registration date: 07/21/2017.

4.
IEEE Trans Med Imaging ; 29(12): 2000-8, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20667809

RESUMO

In a multi-atlas based segmentation procedure, propagated atlas segmentations must be combined in a label fusion process. Some current methods deal with this problem by using atlas selection to construct an atlas set either prior to or after registration. Other methods estimate the performance of propagated segmentations and use this performance as a weight in the label fusion process. This paper proposes a selective and iterative method for performance level estimation (SIMPLE), which combines both strategies in an iterative procedure. In subsequent iterations the method refines both the estimated performance and the set of selected atlases. For a dataset of 100 MR images of prostate cancer patients, we show that the results of SIMPLE are significantly better than those of several existing methods, including the STAPLE method and variants of weighted majority voting.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Humanos , Masculino , Cadeias de Markov , Variações Dependentes do Observador , Próstata/anatomia & histologia , Neoplasias da Próstata/patologia , Reprodutibilidade dos Testes
5.
Radiat Oncol ; 4: 1, 2009 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-19138400

RESUMO

BACKGROUND: A phase III multi-centre randomised trial (ROSEL) has been initiated to establish the role of stereotactic radiotherapy in patients with operable stage IA lung cancer. Due to rapid changes in radiotherapy technology and evolving techniques for image-guided delivery, guidelines had to be developed in order to ensure uniformity in implementation of stereotactic radiotherapy in this multi-centre study. METHODS/DESIGN: A Quality Assurance Working Party was formed by radiation oncologists and clinical physicists from both academic as well as non-academic hospitals that had already implemented stereotactic radiotherapy for lung cancer. A literature survey was conducted and consensus meetings were held in which both the knowledge from the literature and clinical experience were pooled. In addition, a planning study was performed in 26 stage I patients, of which 22 were stage 1A, in order to develop and evaluate the planning guidelines. Plans were optimised according to parameters adopted from RTOG trials using both an algorithm with a simple homogeneity correction (Type A) and a more advanced algorithm (Type B). Dose conformity requirements were then formulated based on these results. CONCLUSION: Based on current literature and expert experience, guidelines were formulated for this phase III study of stereotactic radiotherapy versus surgery. These guidelines can serve to facilitate the design of future multi-centre clinical trials of stereotactic radiotherapy in other patient groups and aid a more uniform implementation of this technique outside clinical trials.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/radioterapia , Neoplasias Pulmonares/radioterapia , Técnicas Estereotáxicas , Algoritmos , Fracionamento da Dose de Radiação , Humanos , Processamento de Imagem Assistida por Computador , Método de Monte Carlo , Garantia da Qualidade dos Cuidados de Saúde , Doses de Radiação , Radioterapia (Especialidade)/métodos , Radiometria , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA