Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 407
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 258: 119440, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38906448

RESUMO

Heavy metal pollution in water sources has become a major worldwide environmental issue, posing a threat to aquatic ecosystems and human health. The pollution of the aquatic environment is increasing as a result of industrialization, climate change, and urban development. The sources of heavy metal pollution in water include mining waste, leachates from landfills, municipal and industrial wastewater, urban runoff, and natural events such as volcanism, weathering, and rock abrasion. Heavy metal ions are toxic and potentially carcinogenic. They can also buildup in biological systems and cause bioaccumulation even at low levels of exposure, heavy metals can cause harm to organs such as the nervous system, liver and lungs, kidneys and stomach, skin, and reproductive systems. There were various approaches tried to purify water and maintain water quality. The main purpose of this article was to investigate the occurrence and fate of the dangerous contaminants (Heavy metal and metalloids) found in domestic and industrial effluents. This effluent mixes with other water streams and is used for agricultural activities and other domestic activities further complicating the issue. It also discussed conventional and non-conventional treatment methods for heavy metals from aquatic environments. Conclusively, a pollution assessment of heavy metals and a human health risk assessment of heavy metals in water resources have been explained. In addition, there have been efforts to focus on heavy metal sequestration from industrial waste streams and to create a scientific framework for reducing heavy metal discharges into the aquatic environment.

2.
Environ Sci Pollut Res Int ; 31(30): 42810-42826, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38878242

RESUMO

This study assessed the bioaccumulation patterns of five trace metals (Cd, Cr, Co, Cu, and Zn) in two edible snail species, Theba pisana and Otala spp., collected from a dumpsite in Safi City, Morocco. The results indicated that bioaccumulation might be species-specific, as metal concentration profiles varied between the two snail species. Additionally, higher metal levels in the dumpsite snails confirmed their potential as bioindicators of trace metal pollution in terrestrial environments. However, the distribution of trace elements within the edible parts of the snails showed marked unevenness, with the viscera accumulating more metals than the foot. The study also evaluated the potential human health risks associated with consuming these snails. Trace metal levels in the edible parts exceeded most international safety thresholds. The estimated daily intakes (EDIs) of trace metals through snail consumption were below the provisional tolerable daily intakes (PTDIs) for both children and adults, suggesting that daily consumption is generally safe. Nonetheless, the hazard index (HI) indicated that children might face health risks from long-term consumption of contaminated snails (HI > 1), while adults are less likely to experience such complications (HI < 1). The total target carcinogenic risk (TTCR) was below 1E-04 for both children and adults, indicating negligible to acceptable carcinogenic risks for all consumer groups.


Assuntos
Caramujos , Animais , Marrocos , Humanos , Medição de Risco , Bioacumulação , Metais , Contaminação de Alimentos , Monitoramento Ambiental , Oligoelementos/análise
3.
Environ Sci Pollut Res Int ; 31(27): 39782-39793, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38833047

RESUMO

The purpose of this study is to assess the seasonal variation of heavy metal concentration in water and fish tissues of common carp (Cyprinus carpio L.) from the Umiam Lake reservoir located in the Ri bhoi district of Meghalaya, India, and to elucidate the possible human health risk of ingesting fish captured from the contaminated lake. Results show significant (p < 0.05) seasonal differences of heavy metal concentrations in the water and different tissues of fish Cyprinus carpio L.. The total concentration of heavy metals in the water exceeds the WHO and BIS standards and thus poses a significant threat to the aquatic flora and fauna of the reservoir. The heavy metal concentrations in fish tissues were tissue-dependent, where the average concentration of heavy metals in all the tissues of Cyprinus carpio L. was in the order of Cr > Pb > Cu > Cd. In addition, the health risk assessment suggests that the heavy metals in the fish muscle from the Umiam Lake reservoir might have adverse effects on human. Therefore, the overall results of the study provide an understanding on the seasonal distribution of heavy metals in water, provide insight on their bioaccumulation in the fish tissues, and highlights the potential health risk for the local population of long-term fish consumption from Umiam Lake reservoir.


Assuntos
Carpas , Monitoramento Ambiental , Lagos , Metais Pesados , Estações do Ano , Poluentes Químicos da Água , Metais Pesados/análise , Animais , Índia , Lagos/química , Poluentes Químicos da Água/análise , Medição de Risco , Humanos
4.
Environ Monit Assess ; 196(7): 649, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38909348

RESUMO

The presence of elevated levels of heavy metals in soil poses a significant environmental concern with implications for human health and other organisms. The main objective of our study was to reduce the gap information of seasonal abundance, distribution of heavy metals in soil, leaf litter, and some macroinvertebrates in a citrus orchard (Citrus sinensis) in Sohag Governorate, Egypt. The heavy metals copper (Cu), zinc (Zn), lead (Pb), and cadmium (Cd) were determined by atomic absorption spectrometry. Degree of contamination (DC) was determined for both soil and leaf litter contamination. However, the bioaccumulation factor (BAF) was estimated to determine metal accumulation in the macroinvertebrates including earwigs Anisolabis maritima, chilopoda Scolopendra moristans, spider Dysdera crocata, and earthworm Aporrectodea caliginosa. The study area had clay-loam with varying organic matter, salinity, and pH levels. The degree of contamination varied among seasons, with the highest levels typically observed in autumn in both soil and leaf litter. The soil ranged from low contamination (1.82) to high contamination levels (4.4), while the leaf litter showed extremely high (30.03) to ultra-high (85.92) contamination levels. The mean ecological risk index results indicated that the sampling area had moderate ecological risk levels for Cd (44.3), Zn (42.17), and Pb (80.05), and extremely high levels for Cu (342.5). Heavy metal concentrations in the selected fauna were the highest in autumn, and the bioaccumulation factor varied among species and seasons with some species classified as e-concentrators, micro-concentrators, and macro-concentrators of certain heavy metals. Scolopendra moristans exhibited the highest mean metal concentrations (Cd, Pb, and Zn), while Aporrectodea caliginosa had the lowest. Thus, the differences in heavy metal concentrations found in different soil taxa highlight the significance of taxing a holistic understanding of feeding mechanisms into account when evaluating the potential risk for animals that consume invertebrates.


Assuntos
Monitoramento Ambiental , Invertebrados , Metais Pesados , Folhas de Planta , Poluentes do Solo , Solo , Metais Pesados/análise , Metais Pesados/metabolismo , Egito , Animais , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Solo/química , Invertebrados/metabolismo , Bioacumulação
5.
Aquat Toxicol ; 272: 106944, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823071

RESUMO

Microplastic (MP) pollution has engulfed global aquatic systems, and the concerns about microplastic translocation and bioaccumulation in fish and other aquatic organisms are now an unpleasant truth. In the past few years, MP pollution in freshwater systems, particularly rivers and subsequently in freshwater organisms, especially in fish, has caught the attention of researchers. Rivers provide livelihood to approximately 40 % of the global population through food and potable water. Hence, assessment of emerging contaminants like microplastics in rivers and the associated fauna is crucial. This study assessed microplastics (MPs) in fish, sediment and freshwater samples across the third largest riverine system of peninsular India, the Mahanadi River. The number concentrations of MPs measured in water, sediment and fish ranged from 337.5 ± 54.4-1333.3 ± 557.2 MPs/m3, 14.7 ± 3.7-69.3 ± 10.1 MPs/kg. Dry weight and 0.4-3.2 MPs/Fish, respectively. Surprisingly, MPs were found in every second fish sample, with a higher MP number in the gut than in the gills. Black and blue coloured filaments with <0.5 mm size were the dominant MPs with polypropylene and polyethylene polymers in abundance. The Polymer Hazard Index (PHI) and the Potential Ecological Risk Index (PERI) studies revealed that the majority of the sampling sites fell in Risk category V (dangerous category). An irregular trend in the MP concentration was observed downstream of the river, though relatively elevated MP concentrations in water and fish samples were observed downstream of the river. t-Distributed Stochastic Neighbour Embedding (t-SNE) unveiled distinct patterns in MP distribution with a higher similarity exhibited in the MPs found in fish gill and gut samples, unlike water and sediment, which shared certain characteristics. The findings in the current study contribute to filling the knowledge gap of MP assessment and accumulation in global freshwater systems and highlight the microplastic contamination and accumulation in fish with its potential implications on human health.


Assuntos
Monitoramento Ambiental , Peixes , Microplásticos , Rios , Poluentes Químicos da Água , Microplásticos/análise , Poluentes Químicos da Água/análise , Animais , Rios/química , Índia , Medição de Risco , Peixes/metabolismo , Sedimentos Geológicos/química , Bioacumulação , Brânquias/metabolismo , Brânquias/química
6.
Environ Geochem Health ; 46(6): 187, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696018

RESUMO

The presence of toxic trace elements (TEs) has resulted in a worldwide deterioration in freshwater ecosystem quality. This study aimed to analyze the distribution of TEs, including chromium (Cr), nickel (Ni), arsenic (As), mercury (Hg), cadmium (Cd), and lead (Pb), in water, sediment, and organs of Tilapia (Oreochromis mossambicus) collected from selected inland water bodies in Tamil Nadu, India. The water samples exhibited a range of concentrations for TEs: Cr varied from 0.014 to 5.193 µg/L, Ni ranged from 0.283 to 11.133 µg/L, As ranged from 0.503 to 1.519 µg/L, Cd from 0.001 to 0.616 µg/L, and Pb ranged from non-detectable (ND) to 6.103 µg/L. The concentrations of TEs in sediment were found to vary within the following ranges: 5.259 to 32.621 mg/kg for Cr, 1.932 to 30.487 mg/kg for Ni, 0.129 to 0.563 mg/kg for As, 0.003 to 0.011 mg/kg for Cd, ND to 0.003 mg/kg for Hg, and 0.404 to 1.575 mg/kg for Pb. The study found that the accumulation pattern of TE in fishes across all selected areas was liver > bone > gill > muscle. The organs had TE concentrations of Cr (ND-0.769 mg/kg), Ni (ND-1.053 mg/kg), As (0.002-0.080 mg/kg), Pb (ND-0.411 mg/kg), and Hg (ND-0.067 mg/kg), which was below the maximum residual limit prescribed by EC and FSSAI. The bioconcentration factor (BCF) of TEs exhibited a greater magnitude in comparison with the biota-sediment accumulation factor due to the higher concentration of TEs in fish and lower level in water. The assessment of both carcinogenic and non-carcinogenic risks suggests that the consumption of Tilapia from the study region does not pose any significant risks.


Assuntos
Bioacumulação , Sedimentos Geológicos , Tilápia , Oligoelementos , Poluentes Químicos da Água , Animais , Tilápia/metabolismo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Medição de Risco , Sedimentos Geológicos/química , Oligoelementos/análise , Oligoelementos/metabolismo , Índia , Monitoramento Ambiental , Metais Pesados/análise , Humanos , Água Doce
7.
Environ Pollut ; 355: 124219, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38797347

RESUMO

Atmospheric pollution is a major public health issue and has become increasingly critical for human health. Urban atmospheric pollution is typically assessed through physicochemical indicators aligned with environmental legislation parameters, providing data on air quality levels. While the effects of pollution on sensitive organisms serve as a warning for public health decision-makers, there remains a need to explore the interpretation of environmental data on pollutants. The use of species adapted to urban environments as sentinels enables continuous and integrated monitoring of environmental pollution implications on biological systems. In this study, we investigated the use of the plant species Tradescantia pallida as a biomonitor to evaluate the genotoxic effects of atmospheric pollution under diverse vehicular traffic conditions. T. pallida was strategically planted at the leading urban intersections in Uberlândia, Brazil. During COVID-19 pandemic lockdowns, we compared indicators such as physical, biological, and traffic data at different intersections in residential and commercial zones. The reduction in vehicular traffic highlighted the sensitivity of plant species to changes in air and soil pollutants. T. pallida showed bioaccumulation of heavy metals Cd and Cr in monitored areas with higher traffic levels. Additionally, we established a multiple linear regression model to estimate genotoxicity using the micronucleus test, with chromium concentration in the soil (X1) and particulate matter (PM) in the atmosphere (X2) identified as the primary independent variables. Our findings provide a comprehensive portrait of the impact of vehicular traffic changes on PM and offer valuable insights for refining parameters and models of Environmental Health Surveillance.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental , Tradescantia , Tradescantia/efeitos dos fármacos , Tradescantia/genética , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/estatística & dados numéricos , Monitoramento Ambiental/métodos , Monitoramento Biológico/métodos , Brasil , Material Particulado/análise , Material Particulado/toxicidade , Cidades , Testes para Micronúcleos , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Metais Pesados/análise , Metais Pesados/toxicidade , Humanos , COVID-19
8.
Environ Sci Pollut Res Int ; 31(23): 34124-34143, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38696010

RESUMO

The shifting of tannery industries from Hazaribagh to Savar adjacent to Dhaleshwari River might have inevitable adverse impacts, especially the heavy metal contamination of both terrestrial and aquatic ecosystems. The study was carried out to investigate the concentrations of four heavy metals in the soil, water, and plant samples collected from around Dhaleshwari River adjacent to the Bangladesh Small & Cottage Industries Corporation Tannery Industrial Estate, Dhaka. This study revealed that average concentrations of cadmium and chromium in soil exceeded the maximum permissible limit of World Health Organization (1996) and average concentrations of lead, cadmium, and chromium in water exceeded the maximum permissible limit of World Health Organization (2011) and Environmental Conservation Rules (1997). The average concentrations of lead, cadmium, and chromium in the roots and shoots of both Eichhornia crassipes and Cynodon dactylon exceeded the maximum permissible limit of Food and Agriculture Organization/ World Health Organization (2016). Ecological risk assessment using indices model for soil pollution indicated that soil is mostly contaminated with cadmium and chromium which can pose strong ecological risk Health risk assessment using indices model for water pollution revealed the high degree of contamination and unacceptable non-carcinogenic risk and carcinogenic risk for adults as well as children through ingestion of water. Average bioconcentration factor and bioaccumulation factor were higher in Eichhornia crassipes than Cynodon dactylon for lead, cadmium, and chromium. Average translocation factor was also higher in Eichhornia crassipes for all the metals except cadmium. It is suggested remedial and mitigation measures be instituted to control environmental degradation of the newly established Tannery Industrial Estate.


Assuntos
Ecossistema , Monitoramento Ambiental , Metais Pesados , Curtume , Metais Pesados/análise , Bangladesh , Medição de Risco , Poluentes Químicos da Água/análise , Poluentes do Solo/análise , Solo/química
9.
Environ Sci Pollut Res Int ; 31(23): 34381-34395, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38703316

RESUMO

The present study explores the use of periphyton to ameliorate toxic properties of arsenic (As) to Labeo rohita and also assesses the human food safety aspects. Fish were introduced to arsenite [As(III)] contaminated water (0.3 and 3 mg/L) along with periphyton. Biochemical, physiological and immunological parameters, including gene expression, were assessed after 30 days of exposure. Periphyton incorporation significantly improved (p < 0.05) the adverse effects of As on respiration, NH3 excretion and brain AChE activity by reducing oxidative stress and As bioaccumulation. The presence of periphyton in As(III) exposed fish (3 mg/L) increased the immune response (Immunoglobulin M and Complement C3) in the serum and the regulation of the respective immune genes in the anterior kidney was found to be similar to the control. A speciation study using LC-ICP-MS confirmed the high accumulation of As by periphyton (5.0-31.9 µg/g) as arsenate [As (V)], resulting in a lower amount of As in fish muscle. The calculated human health risk indices, Target Hazard Quotient (THQ) and Target Cancer risk (TCR) indicate that fish grown in periphyton-treated water may lower the human health risks associated with As. The study signifies the importance of periphyton-based aquaculture systems in As contaminated regions for safe fish production with enhanced yield.


Assuntos
Arsênio , Bioacumulação , Cyprinidae , Estresse Oxidativo , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade , Medição de Risco , Cyprinidae/imunologia , Peixes
10.
Sci Total Environ ; 928: 172393, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38608901

RESUMO

The bioaccumulation of trace metals Cd, Cr, Cu, Fe, and Zn in soft tissues of the barnacle Pollicipes pollicipes was investigated seasonally along the Atlantic coast of northwestern Morocco. Average concentrations (µg g-1 dry weight) exhibited a decreasing order: Fe (548.15 ± 132.43) > Zn (430.80 ± 181.68) > Cd (17.46 ± 9.99) > Cu (7.72 ± 1.26) > Cr (3.12 ± 0.80), with the highest levels during wet seasons. The "Metal Pollution Index" and "Individual Multimetal Bioaccumulation Index" revealed a substantial barnacle contamination in industrialized areas. Additionally, Cd and Zn concentrations surpassed permissible guideline limits. While the "Target Hazard Quotient" and "Hazard Index" unveiled no significant health risks associated with barnacle consumption for humans, Cd posed potential risks, particularly for children consuming barnacles from polluted locations. Regarding the "Maximum Safe Consumption", Cd demonstrated potential harm across all sex and age groups. These findings contribute valuable data on the safety of barnacle consumption, marking the initial assessment of such risks in Morocco. The study offers evidence of metal pollution occurrence and proposes the barnacle species as a reliable biomonitor of trace metal bioavailabilities in marine coastal areas. To our knowledge, this investigation is the first comprehensive report of metal contamination biomonitoring using barnacles from Moroccan Atlantic waters.


Assuntos
Monitoramento Biológico , Thoracica , Poluentes Químicos da Água , Marrocos , Animais , Medição de Risco , Humanos , Poluentes Químicos da Água/análise , Monitoramento Biológico/métodos , Monitoramento Ambiental/métodos , Metais Pesados/análise , Contaminação de Alimentos/análise
11.
Biol Trace Elem Res ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568335

RESUMO

In this work, bioaccessibility tests for rare earth elements (REEs), Th, and U in marine sediment were carried out, in addition to complementary tests for cytotoxicity and bioaccumulation for the elements La, Ce, Eu, and Gd. The evaluation of human health risk through dermal absorption and oral ingestion was performed using the hazard quotient (HQ). According to the gastric digestion simulation (SBET), it was observed that the elements Ce and Nd exhibited higher absorption capacities in the human body (> 2 µg g-1). La and Sc presented intermediate concentrations (close to 1 µg g-1), while the remaining elements displayed concentrations below 0.5 µg g-1. In the gastrointestinal digestion extraction stage (PBET), all the elements maintained a similar absorption capacity to that observed in SBET, except for the absorption of Y which increased. The results of the bioaccumulation test conducted with fibroblast cells (L929) indicated that La and Eu had a 25% probability of intracellular accumulation. The cell viability test, with exposure to a standard REEs, Th, and U solution in 2% v v-1 HNO3 medium (until 100 µg mL-1) and an aqueous solution of La2O3, Gd(NO3)3, Ce(NO3)3, and Eu2O3 (until 1000 µg mL-1), did not demonstrate cytotoxic effects on fibroblast cells. Considering the ingestion hazard quotient (HQing) and dermal hazard quotient (HQderm) obtained, it was suggested that there is no significant risk of non-carcinogenic effects (< 1). However, they had higher HQing values compared to HQderm, indicating that REEs pose more significant risk to human health through oral ingestion absorption than dermal absorption.

12.
Int J Phytoremediation ; 26(9): 1526-1536, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525911

RESUMO

Bauxite residue (BR) is a large volume by-product generated during bauxite smelting process and metal pollution problem is becoming increasingly prominent in residue areas. Accumulation and transfer of metals in six vascular plants were analyzed and soil environment was evaluated. Results found levels of Al (2,110-26,280 mg kg-1), Fe (990 to 9,880 mg kg-1), Ca (8,020 to 49,250 mg kg-1), Mg (2,060 to 17,190 mg kg-1), K (16,840 to 39,670 mg kg-1), and Ti (80 to 1,240 mg kg-1) in plants. Metal concentrations in soils exceeded background levels. Bioconcentration factor (BCF) found that Al, Fe, and Ti in plants (roots, stems, and leaves) were relatively depleted (BCF <1). Transfer factor (TF) of Al, Fe, Ca, K, and Ti in plants was distinctly higher than 1 and mainly concentrated in stems and leaves. Pollution indices revealed that soil environment was at moderated to serious contaminated risk. Principal components analysis (PCA) showed that Artemisia caruifolia Buch. and Siegesbeckia orientalis L. plants had a good ability to absorb Al and Fe, which can be used as biological indicators and restoration materials.


Currently, soil environment was exposed to moderated to serious contaminated risk from Wachangping karst bauxite residue areas.Bioconcentration factor (BCF) analysis found that Al, Fe, and Ti in six vascular plants (roots, stems, and leaves) were relatively depleted (BCF <1).Transfer factor (TF) of Al, Fe, Ca, K, and Ti in vascular plants was distinctly higher than 1, which mainly concentrated in stems and leaves.PCA revealed that Artemisia caruifolia Buch. and Siegesbeckia orientalis L. plants had a good ability to absorb Al and Fe, which can be used as biological indicators and ecological restoration materials.


Assuntos
Óxido de Alumínio , Poluentes do Solo , Poluentes do Solo/metabolismo , Poluentes do Solo/análise , Bioacumulação , Biodegradação Ambiental , China , Solo/química , Metais/metabolismo , Metais Pesados/metabolismo , Metais Pesados/análise , Monitoramento Ambiental , Folhas de Planta/metabolismo
13.
Toxics ; 12(3)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38535896

RESUMO

The ecological status of Algeciras Bay (South-west Europe), highly influenced by anthropogenic activities, was assessed by monitoring Zn, Cd, Pb, and Cu in water and sediment samples. Total contents and metal fractions with different availabilities and their spatial-seasonal distribution were determined. The trend in water and sediment contents were Zn > Pb ≈ Cu > Cd, without significant seasonal variations. Sites 3 and 4, closest to industrial activities, had the highest metal concentrations, mainly in sediments. Cd showed low partition coefficient in water, indicating higher bioavailability. Total metal content in sediments exceeded the threshold effect level for Cu and were close to Pb. The BCR procedure revealed the highest availabilities for Cd and Pb, due to its higher content in exchangeable and reducible fractions. Higher Pb levels (21.4 ± 5.1 mg/kg) were found in sediments of this bay compared with other ecosystems. Pollution indexes for sediment quality revealed that site 3 was the most polluted (CF = 7.12 and Igeo = 2.25). For an integrative study of the ecological status of this significant bay, these results have been complemented with the metal evaluation in benthic and benthopelagic fish tissues in Ecological status of Algeciras Bay, in a highly anthropised area in south-west Europe, through metal assessment-Part II: Biotic samples.

14.
Toxics ; 12(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38535899

RESUMO

Biotic samples from Algeciras Bay (South-west Europe) were studied to assess its ecological status, complementing the previous abiotic monitoring of trace metals in water and sediments. This bay is a densely populated area with intense port traffic and is highly industrialised with metal inputs. To study the impact of this, Zn, Cd, Pb, and Cu contents were determined in tissues of benthic (Solea senegalensis) and benthopelagic species (Scorpaena porcus, Trigloporus lastoviza, and Diplodus sargus sargus). Notable levels of Zn and Cu were found in the liver and gills of all fish species. Compared to international muscle guidelines, Pb sometimes exceeded the most restrictive values, outstanding S. porcus with 27% of samples above the permissible value. Metal pollution indexes revealed that the liver and gills of benthic species were more affected by metal pollution than benthopelagic species, especially in most industrialised sites. Particularly, S. senegalensis presented a higher accumulation factor from sediment of Cd and Cu in the liver (30.1 and 345.1), probably due to the close interaction as benthic species. Among the species studied, S. senegalensis and D. sargus sargus proved to be the best representative and useful bioindicators of metal-polluted environments as this bay. The results were consistent with the findings from the abiotic samples.

15.
Sci Total Environ ; 923: 171388, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38432380

RESUMO

Significant concerns on a global scale have been raised in response to the potential adverse impacts of emerging pollutants (EPs) on aquatic creatures. We have carefully reviewed relevant research over the past 10 years. The study focuses on five typical EPs: pharmaceuticals and personal care products (PPCPs), per- and polyfluoroalkyl substances (PFASs), drinking water disinfection byproducts (DBPs), brominated flame retardants (BFRs), and microplastics (MPs). The presence of EPs in the global aquatic environment is source-dependent, with wastewater treatment plants being the main source of EPs. Multiple studies have consistently shown that the final destination of most EPs in the water environment is sludge and sediment. Simultaneously, a number of EPs, such as PFASs, MPs, and BFRs, have long-term environmental transport potential. Some EPs exhibit notable tendencies towards bioaccumulation and biomagnification, while others pose challenges in terms of their degradation within both biological and abiotic treatment processes. The results showed that, in most cases, the ecological risk of EPs in aquatic environments was low, possibly due to potential dilution and degradation. Future research topics should include adding EPs detection items for the aquatic environment, combining pollution, and updating prediction models.


Assuntos
Poluentes Ambientais , Fluorocarbonos , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Bioacumulação , Poluentes Químicos da Água/análise , Plásticos/metabolismo , Microplásticos/metabolismo , Medição de Risco , Fluorocarbonos/análise
16.
Sci Total Environ ; 920: 171028, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38378067

RESUMO

Mangroves are the cradle of coastal water biodiversity and are susceptible to heavy metal pollution. However, the trophic transfer mechanism of heavy metals in the mangrove food web and the resulting human health risks are not fully understood. Heavy metal concentration (Cr, Ni, Cu, Zn, As, Cd, Pb, V, Co) and stable isotope ratios of carbon and nitrogen (δ13C and δ15N) were evaluated in sediments and particulate organic matter, litter, and aquatic organisms (plankton, arthropods, mollusks, omnivorous fish, and carnivorous fish) from the Yanpu Bay mangroves. The results revealed that heavy metals exhibited different trophic transfer patterns. As and Hg were efficiently biomagnified, with trophic magnification factors of 1.17 and 1.42, respectively; while Cr, Ni, Cu, Cd, Pb, V, and Co were efficiently biodiluted. Zn exhibited a trophic magnification factor > 1 and was not significantly correlated with δ15N (p > 0.05), suggesting no biomagnification or biodilution. The heavy metals in the important fishery species (omnivorous fish and carnivorous fish) were below the permissible limits, except for Zn in Ophichthus apicalis. The assessment of probabilistic health risks revealed that fish consumption in adults and children posed an acceptable risk (total target hazard quotient <1).


Assuntos
Metais Pesados , Poluentes Químicos da Água , Animais , Criança , Humanos , Cadeia Alimentar , Baías , Cádmio , Chumbo , Monitoramento Ambiental/métodos , Metais Pesados/análise , Peixes , Medição de Risco , China , Poluentes Químicos da Água/análise
17.
Environ Pollut ; 344: 123315, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38185353

RESUMO

Isoprothiolane (IPT) and tricyclazole (TCZ) are widely used in rice farming and recently in combined rice-fish farming. However, co-cultured animals are affected by these pesticides. To investigate the organismal effects and toxicity of pesticides, crayfish were exposed to 0, 1, 10, or 100 ppt TCZ or IPT for 7 days. Pesticide bioaccumulation, survival rate, metabolic parameters, structure of intestinal flora, and antioxidant-, apoptosis-, and HSP-related gene expression were determined. Pesticide exposure caused bioaccumulation of IPT or TCZ in the hepatopancreas and muscles of crayfish; however, IPT bioaccumulation was higher than that of TCZ. Both groups showed significant changes in hepatopancreatic serum biochemical parameters. Mitochondrial damage and chromosomal agglutination were observed in hepatopancreatic cells exposed to 100 ppt IPT or TCZ. IPT induced more significant changes in serum biochemical parameters than TCZ. The results of intestinal flora showed that Vibro, Flavobacterium, Anaerorhabdus and Shewanella may have potential for use as a bacterial marker of TCZ and IPT. Antioxidant-, apoptosis-, and HSP-related gene expression was disrupted by pesticide exposure, and was more seriously affected by IPT. The results suggest that IPT or TCZ induce hepatopancreatic cell toxicity; however, IPT or TCZ content in dietary crayfish exposed to 1 ppt was below the food safety residue standard. The data indicated that IPT exposure may be more toxic than TCZ exposure in hepatopancreas and intestines and toxicity of organism are alleviated by activating the pathway of stress-response, providing an understanding of pesticide compounds in rice-fish farming and food safety.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Microbioma Gastrointestinal , Praguicidas , Tiazóis , Tiofenos , Animais , Antioxidantes/metabolismo , Praguicidas/metabolismo , Astacoidea/metabolismo , Medição de Risco
18.
Environ Geochem Health ; 46(2): 35, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38227063

RESUMO

This study assesses the bioaccumulation, ecological, and health risks associated with potentially toxic metals (PTMs), including Pb, Hg, Cd, As, and Cr in Hare Island, Thoothukudi. The results revealed that the concentration of PTMs in sediment, seawater, and S. wightii ranged from 0.095 to 2.81 mg kg-1, 0.017 to 1.515 mg L-1, and 0.076 to 5.713 mg kg-1, respectively. The highest concentrations of PTMs were found in the S. wightii compared to seawater and sediment. The high bioaccumulation of Hg and As in S. wightii suggests that it can be used as a bioindicator for these elements in this region. The ecological risk indices, which include individual, complex, biological, and ecological pollution indices, suggest that Hare Island had moderate contamination with Hg and Cd. However, there are no human health risks associated with PTMs. This study examines the current ecological and health risks associated with PTMs and emphasizes the importance of regular monitoring.


Assuntos
Lebres , Mercúrio , Alga Marinha , Humanos , Animais , Bioacumulação , Cádmio , Água do Mar
19.
Environ Monit Assess ; 196(2): 109, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38172417

RESUMO

The study investigates the occurrence and bioaccumulation of heavy metals in water, sediment, fish, and prawn from the Ojo River with a view to identify the source of origin and the associated ecological and human health risks. The result shows that heavy metal concentrations in water [As = 0.010, Cd = 0.001, Cr = 0.041, Cu = 0.019, Co = 0.050, Fe = 0.099, Pb = 0.006, Ni = 0.003, and Zn = 0.452(mg/L)] were within the acceptable limits. The heavy metals in the sediment [As = 0.050, Cd = 0.287, Cr = 0.509, Cu = 0.207, Co = 0.086, Fe = 33.093, Pb = 0.548, Ni = 0.153 and Zn = 4.249 (mg/kg)] were within their respective background levels or earth's crust and the TEL and PEL standard limits. The bioaccumulation of heavy metals in fish and prawn tissues are in this hierarchical form: Fe > Zn > Cu > Cr > Ni > Co > Pb > Ar > Cd and Fe > Zn > Cu > Cr > Pb > Ar > Ni > Co > Cd, respectively. The bioaccumulation factors of heavy metals in fish ranged from 0.893 - 16.611 and 1.056 - 49.204 in prawn, which were higher than the biota-sedimentation factors (BSAF) values, inferring that the fish and prawns of this study ingested heavy metals highly from water column. The aggregated BSAF scores (fish = 5.584 and prawn = 9.137) showed that these organisms are good concentrators of heavy metals in sediments. The water quality index and other pollution indices (Single pollution index, Heavy metal assessment index, and Heavy metal pollution index) demonstrates slightly clean water, with a moderate level of contamination. The HI values of heavy metals in water, fish, and prawn were lower than 1, implying non-carcinogenic risk in children or adults. The ADD and EDI values of the metals were within their respective oral reference doses (RfD). The TCR values showed that exposure to water, either by ingestion or dermal absorption and the consumption of P. obscura and M. vollenhovenii from the Ojo River would not induce cancer risks in people, though As, Cr, Cd, and Pb showed carcinogenic potentials. The sediment contamination indices such as CF, mCd, EF, and Igeo showed a moderate level of pollution. The ecological risk values (NMPI, mCd = 0.068, PLI = 0.016, and R.I = 86.651) of heavy metals implies "no-moderate risk" except for Cd, which showed high risk. The ecotoxicological parameters,  m-PEL-Q (0.024) and m-ERM-Q (0.016) denotes low contamination and no probability of acute toxicity. The CV analysis showed high dispersions and variabilities in the distributions of the heavy metals in water. Other source analyses (Pearson's correlation matrix, PCA, and HCA) showed that both natural processes and anthropogenic activities are responsible for the occurrence of heavy metals in water and sediment from the Ojo River.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Criança , Adulto , Humanos , Rios , Monitoramento Ambiental , Nigéria , Cádmio/análise , Chumbo/análise , Poluentes Químicos da Água/análise , Sedimentos Geológicos/análise , Metais Pesados/análise , Medição de Risco , Qualidade da Água , China
20.
Environ Sci Pollut Res Int ; 31(10): 15199-15208, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38291207

RESUMO

Anthropogenic activities lead to environmental contamination with foreign substances such as heavy metals. This work was aimed to monitor trace elements (total arsenic (As), cadmium (Cd), chrome (Cr), cobalt (Co), copper (Cu), lead (Pb), manganese (Mn), mercury (Hg), nickel (Ni), and zinc (Zn)) contamination levels (dry weight base) in three natural freshwater reservoirs of Oman including Al Khawd and Al Amarat (Muscat Governorate) and Surur area (Ad Dakhiliyah Governorate as control area) using a native benthic inland fish (Garra shamal; Cyprinidae) for the first time. The muscle and liver of a hundred and twenty G. shamal were collected to assess the degree of metal contamination. Atomic absorption spectrometry was used as an analytical technique. From the spectrum of analyzed elements, we found Zn as a major element in monitored areas. The statistically significant (P < 0.05) highest concentrations of Zn liver (0.275 ± 0.065 µg/g) were in Al Amarat compared to the other areas. The concentrations of monitored elements in the fish muscle were lower than the liver samples. Furthermore, the fish length was significantly correlated with the accumulation of Hg and Co in both muscle and liver samples. In all analyzed fish from Oman inland water, the concentrations of elements were below the permissible limits; however, additional research is needed.


Assuntos
Cyprinidae , Mercúrio , Metais Pesados , Oligoelementos , Animais , Oligoelementos/análise , Omã , Ecossistema , Metais Pesados/análise , Mercúrio/análise , Zinco/análise , Cádmio/análise , Cobalto/análise , Água Doce/química , Músculos/química , Fígado/química , Monitoramento Ambiental/métodos , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA