RESUMO
Triclosan (TCS), an antimicrobial additive in various personal and health care products, has been widely detected in aquatic environment around the world. The present study investigated the impacts of TCS in the gills of the fish, Cyprinus carpio employing histopathological, biochemical, molecular docking and simulation analysis. The 96 h LC50 value of TCS in C. carpio was found to be 0.968 mg/L. Fish were exposed to 1/1000th (1 µg/L), 1/100th (10 µg/L), and 1/10th (100 µg/L) of 96 h LC50 value for a period of 28 days. The histopathological alterations observed in the gills were hypertrophy, hyperplasia, edematous swellings, and fusion of secondary lamellae in TCS exposed groups. The severity of these alterations increased with both the concentration as well as the duration of exposure. The present study revealed that the activity of antioxidant enzymes such as superoxide dismutase, catalase, glutathione-S-transferase, glutathione reductase, glutathione peroxidase, and reduced glutathione content decreased significantly (p < 0.05) in both concentration and duration dependent manner. However, a significant (p < 0.05) increase in the activity of the metabolic enzymes such as acid phosphatase and alkaline phosphatase was observed in all three exposure concentrations of TCS from 7 to 28 days. The activity of acetylcholinesterase declined significantly (p < 0.05) from 7 to 28 days whereas the content of acetylcholine increased significantly at the end of 28 day. The experimental results were further confirmed by molecular docking and simulation analysis that showed strong binding of TCS with acetylcholinesterase enzyme. The study revealed that long-term exposure to sublethal concentrations of TCS can lead to severe physiological and histopathological alterations in the fish.
Assuntos
Acetilcolinesterase , Carpas , Brânquias , Simulação de Acoplamento Molecular , Triclosan , Animais , Triclosan/toxicidade , Brânquias/efeitos dos fármacos , Brânquias/patologia , Acetilcolinesterase/metabolismo , Poluentes Químicos da Água/toxicidade , Glutationa Transferase/metabolismoRESUMO
Chemical contamination of seafood has become a global health concern. Carp fish is one of the most widely consumed globally, and several studies have been conducted on the contamination of carp fish with radioisotopes. In the current study, a meta-analysis and probabilistic exposure assessment regarding the Potassium-40 (40K), Polonium-210 (210Po), Radium-226 (226Ra), and Thorium-230 (230Th) in the fillet tissue of carp fish were performed. In this regard, Scopus and PubMed were screened to retrieve the associated citations with on the concentration of radioisotopes in the fillet tissue of carp fish until October 2021. The rank order of radioisotopes in fillet tissue carp fish was 40K (103.49 Bq kg-1) > 210Po (9.39 Bq kg-1) > 226Ra (0.62 Bq kg-1) > 230Th (0.39 Bq kg-1). The highest effective dose due to 210Po ingestion was observed in Spain (male; 4.44E-05 Sv y-1, female; 2.67E-06 Sv y-1); 40K (female, 5.07E-07 Sv y-1); 226Ra (male, 9.93E-09 Sv y-1). The mean of effective dose (ED) in the male and females in India due to ingestion of 230Th as result of carp fish consumption was (1.70E-06 Sv y-1) and (7.01E-08 Sv y-1), respectively. The probabilistic exposure assessment by the Monte Carlo simulation method revealed that consumers of fillet tissue carp fish content of radioisotopes are at a safe range (0.001 Sv y-1).
Assuntos
Carpas , Radioisótopos , Alimentos Marinhos , Animais , Feminino , Masculino , Peixes , Polônio , Radioisótopos de Potássio , Radioisótopos/análise , Rádio (Elemento) , Alimentos Marinhos/análise , TórioRESUMO
Spring Viraemia of Carp (SVC) was assessed according to the criteria of the Animal Health Law (AHL), in particular the criteria of Article 7 on disease profile and impacts, Article 5 on its eligibility to be listed, Annex IV for its categorisation according to disease prevention and control rules as in Article 9 and Article 8 for listing animal species related to SVC. The assessment was performed following the ad hoc method for data collection and assessment previously developed by the AHAW panel and already published. The outcome reported is the median of the probability ranges provided by the experts, which indicates whether each criterion is fulfilled (lower bound ≥ 66%) or not (upper bound ≤ 33%), or whether there is uncertainty about fulfilment. Reasoning points are reported for criteria with an uncertain outcome. According to the assessment performed here, it is uncertain whether SVC can be considered eligible to be listed for Union intervention according to Article 5 of the AHL (45-90% probability). According to the criteria in Annex IV, for the purpose of categorisation related to the level of prevention and control as in Article 9 of the AHL, the AHAW Panel concluded that SVC does not meet the criteria in Section 1 (Category A; 5-33% probability of meeting the criteria) and it is uncertain whether it meets the criteria in Sections 2, 3, 4 and 5 (Categories B, C, D and E; 33-66%, 10-66%, 45-90% and 45-90% probability of meeting the criteria, respectively). The animal species to be listed for SVC according to Article 8 criteria are provided.
RESUMO
There are several technical challenges and public issues concerning genome editing applications before they become viable in commercial aquaculture. Recently, we developed a novel strategy to generate all-female (AF) common carp, which exhibited a growth advantage over the control carp, using genetic editing through single gene-targeting manipulation. Here, we found that the body weight of the AF common carp was higher by 22.58% than that of the control common carp. Because the genotype of the AF common carp was cyp17a1+/-;XX, the contents of sex steroids were normally synthesized, as they were comparable to that of the control female carp. To evaluate the food safety of the AF carp, Wistar rats were fed a diet containing control female carp (control, C) or all-female (AF) carp at an incorporation rate of 5, 10 and 20% (w/w) for 90 days. Compared with those fed control carp, the rats fed AF common carp exhibited no significant difference in body weight, food intake, feed conversion ratio, hematology, serum biochemistry, urine test, relative organ weight, gross necropsy, and histopathological examination. This is the first food safety assessment of the farmed fish strain cultured using CRISPR/Cas9, which will further advance the fishery development of genome-edited animals.
Assuntos
Carpas , Edição de Genes , Feminino , Animais , Ratos , Ratos Wistar , Genótipo , Peso Corporal , Ração Animal/análise , DietaRESUMO
Hyperspectral imaging (HSI) has been applied to assess the texture profile analysis (TPA) of processed meat. However, whether the texture profiles of live fish muscle could be assessed using HSI has not been determined. In this study, we evaluated the texture profile of four muscle regions of live common carp by scanning the corresponding skin regions using HSI. We collected skin hyperspectral information from four regions of 387 scaled and live common carp. Eight texture indicators of the muscle corresponding to each skin region were measured. With the skin HSI of live common carp, six machine learning (ML) models were used to predict the muscle texture indicators. Backpropagation artificial neural network (BP-ANN), partial least-square regression (PLSR), and least-square support vector machine (LS-SVM) were identified as the optimal models for predicting the texture parameters of the dorsal (coefficients of determination for prediction (rp) ranged from 0.9191 to 0.9847, and the root-mean-square error for prediction ranged from 0.1070 to 0.3165), pectoral (rp ranged from 0.9033 to 0.9574, and RMSEP ranged from 0.2285 to 0.3930), abdominal (rp ranged from 0.9070 to 0.9776, and RMSEP ranged from 0.1649 to 0.3601), and gluteal (rp ranged from 0.8726 to 0.9768, and RMSEP ranged from 0.1804 to 0.3938) regions. The optimal ML models and skin HSI data were employed to generate visual prediction maps of TPA values in common carp muscles. These results demonstrated that skin HSI and the optimal models can be used to rapidly and accurately determine the texture qualities of different muscle regions in common carp.
RESUMO
A 90-day feeding trial was conducted to assess the effects of black soldier fly larvae meal (BSFLM) as a replacement for soybean meal (SM) on growth performance and flesh quality of grass carp. A total of 420 grass carp (299.93 ± 0.85 g) were randomly divided into 7 groups (triplicate) and fed 7 diets with SM substitution of 0% (SM, control), 15% (BSFLM15), 30% (BSFLM30), 45% (BSFLM45), 60% (BSFLM60), 75% (BSFLM75) and 100% (BSFLM100) by BSFLM. The growth performance of grass carp in the BSFLM75 and BSFLM100 groups were significantly lower compared to other groups (P < 0.05). The mid-gut villus height was the lowest in the BSFLM100 group (P < 0.05). Muscle nutritional value was improved due to increased DHA (docosahexaenoic acid), EPA (eicosapentaenoic acid), total HUFA (highly unsaturated fatty acids) and glycine levels, and reached the optimum in the BSFLM100 group (P < 0.05). According to the results of principal component analysis and weight analysis of muscle texture and body color, all the BSFLM diets except BSFLM15 could improve muscle texture and body color and reached the optimum level in the BSFLM100 group. Muscle drip loss and hypoxanthine content were the lowest and muscle antioxidant capacity was the highest in the BSFLM75 group, and water- and salt-soluble protein contents reached the optimum level in the BSFLM60 group (P < 0.05). Dietary BSFLM significantly reduced muscle fiber area and diameter, and increased muscle fiber density and the proportion of small fiber (diameter <20 µm) (P < 0.05). Additionally, sarcomere lengths in the BSFLM75 and BSFLM100 groups were significantly higher than that in the SM group (P < 0.05). The mRNA relative expression levels of MyoD, Myf5, MyHC and FGF6b were remarkably up-regulated at an appropriate dietary BSFLM level (P < 0.05). In conclusion, BSFLM could replace up to 60% SM without an adverse effect on growth performance and improve the flesh quality of grass carp. The optimum levels of dietary BSFLM were 71.0 and 69.1 g/kg diet based on the final body weight and feed conversion ratio. The flesh quality was optimal when dietary SM was completely replaced with BSFLM (227 g/kg diet).
RESUMO
To estimate the bioconcentration factor (BCF), the in vitro intrinsic clearance (CLIN VITRO,INT) from rainbow trout liver S9 fractions (RT-S9) can be applied to in vitro-in vivo extrapolation (IVIVE) models, yet uncertainties remain in model parameterization. An alternative model approach is evaluated: a regression model was built in the form log BCF = a × log Kow + b × log CLIN VITRO,INT. The coefficients a and b were fitted based on a training set of 40 chemicals. A high robustness of the coefficients and good accuracy of BCF prediction were found on independent datasets of neutral organic chemicals (measured log Kow 3.3-6.2). BCF predictions were similar to or in better agreement with in vivo BCFs compared to IVIVE models (2.4- to 2.9- vs 2.8- to 3.6-fold misprediction) for training and test sets. Species-matched models (trout, carp) did not result in improvements. This study presents the largest dataset on CLIN VITRO,INT and BCFs to assess predictivity of the RT-S9 assay. The robustness of the regression statistics on different datasets and the high statistical weight of the CLIN VITRO,INT term illustrate the predictive power of the RT-S9 assay as an important step toward regulatory acceptance to replace animal experiments.
Assuntos
Bioensaio , Peixes , Animais , Bioacumulação , Cinética , IncertezaRESUMO
The aim of this research was to investigate the effects of biofilm on antibiotic resistance of the bacterial isolates present in fish meat and to assess the risk of antibiotic residues for public health. Common carp, silver carp and grass carp fishes were purchased from retail stores for an in vitro biofilm investigation and a drug-resistant pattern determination. In all samples, up to 104 CFU/g of bacteria, such as Escherichia coli, Aeromonas hydrophila, Shewanella putrefaciens, Vibrio spp. and Staphylococcus spp., were observed. Isolates from the samples and their biofilms were subjected to an antibiogram assay using antibiotics such as amoxicillin, ampicillin, cefotaxime, ciprofloxacin, chloramphenicol, gentamicin, streptomycin, tetracycline and trimethoprim. Obtained results showed that some of the isolates were sensitive to antibiotics and some were resistant. Results of LC-MS/MS analysis showed that antibiotics residues were present in fish samples in the range between 4.9 and 199.4 µg/kg, with a total sum of 417.1 µg/kg. Estimated daily intake (EDI) was established to be 0.274 µg/kg of body weight/day for men and 0.332 µg/kg of body weight/day for women, with an acceptable daily intake (ADI) of 8.5 and 7.0 µg/kg of body weight/day for men and women, respectively. The results of the present study, therefore, highlight the safe consumption of fresh fish.
RESUMO
This cross-sectional study was conducted to determine and compare the concentrations of heavy metals (Zn, Pb, Cd, and Hg) in carp-farming water and muscle of various carp species including common carp (Cyprinus carpio), bighead carp (Hypophthalmichthys nobilis), silver carp (Hypophthalmichthys molitrix), and grass carp (Ctenopharyngodon idella) collected from three major warm-water fish farms in Mazandaran Province (Iran) during March 2018 to March 2019. In addition, bioaccumulation of heavy metals (BCFs) and carcinogenic and non-carcinogenic risk assessments of consumers exposed to heavy metals through fish consumption were estimated. The water concentration of all metals in this study was lower than permissible limits. The concentration of Zn in the water (10.21-17.11 µg L-1) was higher than that of other metals in all sites, followed by Pb > Cd > Hg. In fish muscle, Zn concentration in silver carp was the highest, and the lowest concentrations were related to Hg and Cd in common carp and grass carp, respectively. The target hazard quotients (THQ) indicated that the non-carcinogenic health risk to humans was relatively low by consuming four farmed carp species products. The carcinogenic risk of inorganic Pb was 1.24E-04 (common carp) to 2.11E-04 (grass carp) for adults, which is within the acceptable range. The values of BCFs for all metals demonstrated that farmed carp muscle could not be considered a bioaccumulative tissue for heavy metals. The results indicated that the concentrations of heavy metals in the farmed carp species in North Iran were relatively low and did not cause considerable human health risks.
Assuntos
Carpas , Cyprinidae , Mercúrio , Metais Pesados , Poluentes Químicos da Água , Animais , Adulto , Humanos , Cádmio , Chumbo , Água , Irã (Geográfico) , Estudos Transversais , Monitoramento Ambiental , Metais Pesados/análise , Zinco , Músculos/química , Medição de Risco , Poluentes Químicos da Água/análiseRESUMO
Distillers dried grains with solubles (DDGS), a coproduct from the ethanol production industry, is successfully used as an ingredient in feeding cattle and pigs due to its relatively high protein and nutrient content and low price compared to cereals. The aim of this study was to establish the optimal DDGS concentration that can be included in the diet of common carp. A seven-week experiment was performed on common carp with an initial weight of 86 g feed with three experimental diets D0 (DDGS 0%), D1 (DDGS 25%) and D2 (DDGS 35%). The chemical composition of DDGS analyzed by Fourier Transform Near-Infrared (FT-NIR) spectroscopy showed a protein content of 27.56% and oil at 6.75%. Diets with DDGS did not produce significant changes in growth parameters, flesh quality, and blood biochemical profile. Regarding the oxidative status in the muscle tissue, D1 and D2 significantly reduced, in a dose-dependent manner, the specific activity of SOD and GSH, while CAT and GPX were left unaffected. In the liver tissue, CAT, GSH, MDA and carbonylated proteins were reduced in the DDGS diets. The microbiological analysis of the intestinal contents revealed a variation in microbial density depending on the diet used. The total number of aerobic germs was between 224.2 × 104 and 69.84 × 106 (D2 > D1 > D0) and the total number of anaerobic germs was between 15.2 × 102 and 28.2 × 102 (D2 > D0 > D1).
RESUMO
Worldwide, the anticonvulsant drug carbamazepine (CBZ) is the most frequently identified pharmaceutical residue detected in rivers. Reported chronic effects of CBZ in non-target freshwater organisms, particularly fish, include oxidative stress and damage to liver tissues. Studies on CBZ effects in fish are mostly limited to zebrafish and rainbow trout studies. Furthermore, there are only a few chronic CBZ studies using near environmental concentrations. In this study, we provide data on subacute effects of CBZ exposure (28 days) to common carp (Cyprinus carpio), employing a set of biochemical markers of damage and exposure. CBZ was found to induce a significant change in the hepatic antioxidant status of fish subjected to 5 µg/L. Moreover, with increasing concentrations, enzymatic and non-enzymatic biomarkers of oxidative defence (catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), DNA strand breaks)), toxicant biotransformation (ethoxyresorufin-o-demethylase (EROD), glutathione-S-transferase (GST)), and organ and tissue damage (lactate dehydrogenase (LDH), cetylcholinesterase (AChE)) were altered. The AChE, LDH, and lipid peroxidation (LPO) results indicate the occurrence of apoptotic process activation and tissue damage after 28 days of exposure to CBZ. These findings suggest significant adverse effects of CBZ exposure to common carp at concentrations often found in surface waters.
RESUMO
Promoting circular economy by transforming food residues into alternative high-value protein sources for aquaculture feed is a new way to develop alternative raw materials for fishmeal. This study systematically evaluated the effects of chicken intestinal hydrolysates (CIH) on the intestinal immune health of common carp through growth performance, antioxidant capacity, and intestinal immunity analysis in order to replace fishmeal. Five iso-nitrogenous and iso-lipidic experimental feeds were formulated to replace 0% (CIH-0), 25% (CIH-25), 50% (CIH-50), 75% (CIH-75) and 100% (CIH-100) of the fishmeal with CIH. Each experimental diet was fed to triplicate groups of 30 carp for 8 weeks. The results revealed that no significant differences in the final body weight, weight gain rate, feed coefficient radio, feed intake and protein efficiency ratio were found among the CIH-0, CIH-25, and CIH-50 groups, while the final body weight and weight gain rate in the CIH-75 and CIH-100 groups were significantly decreased and the feed coefficient radio was significantly increased. The aspartate aminotransferase of all CIH groups were significantly decrease, and the total protein, albumin did not differ among the CIH-0, CIH-25, CIH-50, and CIH-75 groups. The trypsin content was significantly increased in the CIH-75 and CIH-100 groups. No significant differences in the antioxidant index (catalase, glutathione peroxidase and malonaldehyde) were found among all CIH groups compared with the CIH-0 group. The expression levels of pro-inflammatory cytokines IL-1ß and TNF-α were significantly down-regulated in the CIH-50 group and anti-inflammatory cytokines IL-10 and TGF-ß2 were significantly up-regulated in the CIH-50 and CIH-75 groups. No significant differences in the expression levels of claudin-1, claudin-7 and claudin-11 were observed between the CIH-0 and CIH-50 groups, while the expression levels of ZO-1, occludin and MLCK were significantly up-regulated in the CIH-50 group compared with the CIH-0 group. The expression level of claudin-1 was down-regulated in the CIH-75 and CIH-100 groups. Hence, the study demonstrated the potential of CIH as a novel protein source for replacing fishmeal, and replacing 50% of fishmeal with CIH did not significantly influence the growth performance, immune responses, and intestinal barrier of common carp (Cyprinus carpio).
Assuntos
Carpas , Ração Animal/análise , Animais , Antioxidantes/metabolismo , Peso Corporal , Carpas/metabolismo , Galinhas , Claudina-1 , Citocinas , Dieta/veterinária , Suplementos Nutricionais/análise , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Intestinos , Aumento de PesoRESUMO
BACKGROUND: Texture softening is always a problem during chilling of grass carp fillets. To solve this problem and provide for better quality of flesh, understanding the mechanism of softening is necessary. Gelatinolytic proteinases are suspected to play an essential role in the disintegration of collagen in softening of fish flesh. In the present study, the types and contribution of gelatinolytic proteinases in chilled fillets were investigated. RESULTS: Four active bands (G1, 250 kDa; G2, 68 kDa; G3, 66 kDa; G4, 29 kDa) of gelatinolytic proteinases were identified in grass carp fillets by gelatin zymography. The effect of inhibitors and metal ions revealed that G1 was possibly a serine proteinase, G2 and G3 were calcium-dependent metalloproteinases and G4 was a cysteine proteinase. The effect of the inhibitors phenylmethanesulfonyl fluoride (PMSF), l-3-carboxy-trans-2,3-epoxy-propionyl-l-leucine-4-guanidinobutylamide (E-64) and 1,10-phenanthroline (Phen) on chilled fillets revealed that gelatinolytic proteinase activities were significantly suppressed. Collagen solubility indicated that metalloproteinase and serine proteinase played critical roles in collagen breakdown during the first 3 days, and cysteine proteinase revealed its effect after 3 days. Meanwhile, during chilled storage for 11 days, the final values of shear force increased 19.68% and 24.33% in PMSF and E-64 treatments when compared to control fillets respectively, whereas the increase after Phen treatment was 49.89%. CONCLUSION: Our study concluded that the disintegration of collagen in post-mortem softening of grass carp fillets was mainly mediated by metalloproteinase and to a lesser extent by serine proteinase and cysteine proteinase. © 2021 Society of Chemical Industry.
Assuntos
Carpas , Endopeptidases , Armazenamento de Alimentos/métodos , Animais , Colágeno/química , Endopeptidases/análise , Peptídeo Hidrolases/análise , ProteóliseRESUMO
Grass carp reovirus (GCRV), the most virulent aquareovirus, causes epidemic hemorrhagic disease and tremendous economic loss in freshwater aquaculture industry. VP56, a putative fibrin inlaying the outer surface of GCRV-II and GCRV-III, is involved in cell attachment. In the present study, we found that VP56 localizes at the early endosome, lysosome, and endoplasmic reticulum, recruits the cytoplasmic viral RNA sensor retinoic acid-inducible gene I (RIG-I) and binds to it. The interaction between VP56 and RIG-I was detected by endogenous coimmunoprecipitation (co-IP), glutathione S-transferase (GST) pulldown, and subsequent liquid chromatography-tandem mass spectrometry (LC-MS/MS) and was then confirmed by traditional co-IPs and a novel far-red mNeptune-based bimolecular fluorescence complementation system. VP56 binds to the helicase domain of RIG-I. VP56 enhances K48-linked ubiquitination of RIG-I to degrade it by the proteasomal pathway. Thus, VP56 impedes the initial immune function of RIG-I by dual mechanisms (blockade and degradation) and attenuates signaling from RIG-I recognizing viral RNA, subsequently weakening downstream signaling transduction and interferon (IFN) responses. Accordingly, host antiviral effectors are reduced, and cytopathic effects are increased. These findings were corroborated by RNA sequencing (RNA-seq) and VP56 knockdown. Finally, we found that VP56 and the major outer capsid protein VP4 bind together in the cytosol to enhance the degradation of RIG-I and more efficiently facilitate viral replication. Collectively, the results indicated that VP56 allies VP4, recruits, blocks, and degrades RIG-I, thereby attenuating IFNs and antiviral effectors to facilitate viral evasion more effectively. This study reveals a virus attacking target and an escaping strategy from host antiviral immunity for GCRV and will help understand mechanisms of infection of reoviruses. IMPORTANCE Grass carp reovirus (GCRV) fibrin VP56 and major outer capsid protein VP4 inlay and locate on the outer surface of GCRV-II and GCRV-III, which causes tremendous loss in grass carp and black carp industries. Fibrin is involved in cell attachment and plays an important role in reovirus infection. The present study identified the interaction proteins of VP56 and found that VP56 and VP4 bind to the different domains of the viral RNA sensor retinoic acid-inducible gene I (RIG-I) in grass carp to block RIG-I sensing of viral RNA and induce RIG-I degradation by the proteasomal pathway to attenuate signaling transduction, thereby suppressing interferons (IFNs) and antiviral effectors, facilitating viral replication. VP56 and VP4 bind together in the cytosol to more efficiently facilitate viral evasion. This study reveals a virus attacking a target and an escaping strategy from host antiviral immunity for GCRV and will be helpful in understanding the mechanisms of infection of reoviruses.
Assuntos
Proteínas do Capsídeo/metabolismo , Carpas/virologia , Proteína DEAD-box 58/metabolismo , Interferons/imunologia , Reoviridae/imunologia , Animais , Proteínas do Capsídeo/genética , Linhagem Celular , Doenças dos Peixes/virologia , Pesqueiros/economia , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Viral/genética , RNA-Seq , Reoviridae/metabolismo , Infecções por Reoviridae/veterinária , Infecções por Reoviridae/virologia , Espectrometria de Massas em Tandem , UbiquitinaçãoRESUMO
Abundant microplastics was found in aquatic ecosystem and aquatic organisms, which raised many concerns in public. Silver carp (Hypophthalmichthys molitrix), a species filter-feeding planktivorous fish, feed on particle between 4 and 85 µm in size, and the respiratory process works together with feeding mechanism when filtering plankton from water. The aim of this study was to assess the physiological response of silver carp exposed to 5 µm polystyrene microspheres during 48 h of exposure followed by 48 h of depuration through the gill histology, and oxidative stress biomarkers in intestine. The results revealed that microplastics can pass through the whole digestive tract of silver carp and be excreted by feces. Low microplastic concentration (80 µg/L) induced oxidative stress and up-regulation of TUB84 and HSP70 gene in intestine, and silver carp have ability to recover after the exposure to microplastic was removed. High microplastic concentration (800 µg/L) definitely cause significant damage to gills and intestines, in this situation, far beyond the possibility of fish own repair, and even when the threaten removed, silver carp can't recovery soon. Our studies assessed the dosage-effect relationship with physiological stress on silver carp when exposure to microplastics.
Assuntos
Carpas , Microplásticos/toxicidade , Estresse Oxidativo , Poliestirenos/toxicidade , Testes de Toxicidade Aguda/veterinária , Poluentes da Água/toxicidade , Animais , Biomarcadores/metabolismo , Relação Dose-Resposta a Droga , Intestinos/efeitos dos fármacos , Microesferas , Material Particulado/toxicidadeRESUMO
Endosulfan is an organochlorine pesticide, which is commonly used throughout the world. It accumulates in the environment and may cause significant damage to the ecosystems, particularly to the aquatic environments. The present study was conducted to evaluate the genotoxic effect of endosulfan on the grass carp (Ctenopharyngodon idella) blood. The fish were exposed to three different concentrations, 0.75 ppb/day, 1.0 ppb/day, and 1.5ppb/day of endosulfan for 7, 14, 21, and 28 days. The study was a randomized control trial and the control group was not exposed to endosulfan. The results showed that after 7 days, the level of DNA damage in all the concentrations was significant (P < 0.05), while after 14, 21, and 28 days' trials, highly significant (P < 0.000) level of DNA damage was observed. Hence, time- and dose-dependent DNA damage was observed in fish DNA by comet assay. It is concluded from our results that with the increase in endosulfan concentration and exposure duration, the level of DNA damage also increased. As the current study showed the severe genotoxic effect of endosulfan in Ctenopharyngodon idella, therefore, the imprudent and indiscriminate use of endosulfan should be controlled and monitored by the concerned government authorities.
Assuntos
Carpas , Doenças dos Peixes , Animais , Carpas/genética , Ensaio Cometa , Dano ao DNA , Ecossistema , Endossulfano/toxicidade , Proteínas de Peixes/genéticaRESUMO
This study was conducted to investigate and predict the yield and environmental emissions final score (EEFS) of common carp fish farms in Shushtar county of Khuzestan province. The required data was collected from 115 carp fish farms selected by random sampling using face-to-face questionnaire and interview. The total input energy, the yield, and energy ratio were obtained as 293,127.95 MJ ha-1, 3389.28 kg ha-1, and 0.30, respectively. Electricity and feed consumption had the highest contributions to total input energy and environmental emissions. The normalization results showed that the marine aquatic ecotoxicity (MAET) and freshwater aquatic ecotoxicity (FAET) had the highest values among all impact categories with 671.50×10-9 and 152.60×10-9, respectively. Also, the EEFS was calculated per tons of carp fish as 7793.09 pPt. The comparison of results between the regression model and adaptive neuro-fuzzy inference system (ANFIS) indicated that in prediction of the yield, the accuracy values (R2) of regression and ANFIS models were 0.87 and 0.99, respectively, while in prediction of EEFS, R2 of regression and ANFIS models were 0.98 and 0.99, respectively. In total, it was concluded that ANFIS model can predict the yield better than regression model.
Assuntos
Carpas , Animais , Fazendas , Estágios do Ciclo de VidaRESUMO
The objective of changing the simple exploitation of fish stocks to highly efficient fish farms in lakes and reservoirs is to improve the productivity of inland freshwater fish. The small- and medium-sized lakes can be used to increase the production of farmed fish with lake management. Therefore, this study proposed to investigate the production and economic efficiency of carp in lake commercial fish farms. In this investigation, the results of carp farming experiments in fish farms in small lake commercial fish farms (LCFF) are evaluated using advanced methods and techniques. The research was carried out based on the Voroshilovsky reservoir, which operated in the LCFF mode. The farm had hatchery and carp fry ponds for expanding fingerlings based on the "Scientific and production center of fishery" LLP from 2019 to 2020. This study was performed on different types of common carp and herbivorous fish (grass and silver carp), and sexual products were collected in fried ponds and the Voroshilovsky reservoir. The absolute growth gain of common carp, silver carp, and grass carp were 301.00, 300.40, and 577.00 grams, respectively, and their mean daily weight gain values were 2.50, 2.50, and 4.80 grams. Common carp recorded the highest level of planned fish productivity (169.30 kg/ha), and the lowest level of this trait was grass carp (43.50 kg/ha). Data of mean weight and body length of common carp, grass carp, and silver carp fishes showed a variation of 4.55 kg and 56.25 cm, 6.06 kg and 75.50 cm, as well as 6.30 Kg and 75.05 cm, respectively. This difference can be justified according to the variance of fish length, which on average, 80 grams of weight is obtained per centimeter of fish length. The economic efficiency of carp was calculated, and the net profit was determined at more than 50% of total income. According to the net profit indicator, due to the implementation of a part of the fingerlings, the carp reared in the pond area; as a result, this method is profitable and accounts for 104% of the total planned economic profit. Therefore, fish production from aquaculture can rise to 10 times to maintain high-quality food security and other essential nutrients, provide job opportunities, and cash income to help job-seeking youth.
Assuntos
Carpas , Animais , Aquicultura , Pesqueiros , Cazaquistão , LagosRESUMO
Vaccine immunization is currently the only effective way to prevent and control the grass carp haemorrhagic disease, and the primary pathogen in these infections is grass carp reovirus genotype II (GCRV-II) for which there is no commercial vaccine. In this study, we evaluated the safety of the GCRV-II avirulent strain GD1108 which isolated in the early stage of the laboratory through continuously passed in grass carp. The immunogenicity and protective effects were evaluated after immunization by injection and immersion. The avirulent strain GD1108 could infect and replicate in the fish which did not revert to virulence after continuous passage. No adverse side effects were observed and the vaccine strain did not spread horizontally among fish. Two routes of immunization induced high serum antibody titers of OD450nm value were 0.79 and 0.76 and neutralization titers of 320 and 320 for the injection and immersion routes of inoculation, respectively. The expression of immune-related genes increased after immunization and the levels were statistically significant. Challenge of immunized fish with a virulent GCRV-II strain resulted in protection rates of 93.88% and 76.00% for the injection and immersion routes, respectively. The avirulent strain GD1108 revealed good safety and immunogenicity via two different inoculation routes. Although the injection route provided the best immune effect, two pathways provided protection against infection with virulent GCRV-II strains in various degrees. These results indicated that the avirulent strain GD1108 can be used for the development and application as live vaccine.
Assuntos
Carpas , Doenças dos Peixes , Infecções por Reoviridae , Reoviridae , Animais , Doenças dos Peixes/prevenção & controle , Genótipo , Reoviridae/genética , Infecções por Reoviridae/prevenção & controle , Infecções por Reoviridae/veterináriaRESUMO
Grass carps were exposed to the established lethal concentration (LC) values of copper (Cu), chromium (Cr), and lead (Pb) each for the exposed period of 24, 48, 72, and 96 h respectively. Concentrations of these metals were determined in the brain, liver, muscles, gills, kidneys, and intestinal tissues of exposed and control fish through the atomic absorption spectrophotometer after the wet digestion process. The metals accumulation inside these tissues confirmed the absorption of metals from media into the tissues of the model organism. The accumulated concentration in fish tissues was confirmed to be concentration-dependent with significant (p < 0.05) elevated mean values seen for the lead followed by chromium and copper as compared with the mean concentration values of their respective control group. Levels of metals were found above the permissible standards suggested by the regulatory authorities in the fish's body. Histological sections of the same targeted organs exposed to the three exposure concentration groups were studied and compared with the sections of the healthy group. The histopathological lesions were scored to rank the deleterious effects of metals. The histopathological changes were recorded in concentration and progressive time-related series where gills had the greatest number of scored lesions followed by the kidneys and intestines, muscles, brain, and finally the liver as the least affected organ. Moreover, the organs were not affected uniformly by the metals; in fact, every studied organ has given mild to severe responses towards the toxic metals where lead had proven to cause more severe lesions as compared with copper and chromium. The histological lesions recorded mostly were thus concentration-dependent as revealed in the bioaccumulation of these metals with the effects ranked as lead > chromium > copper with a few exceptions. The findings can be used as a benchmark for the evaluation of the fate and effects of the toxic metals in the expanded aquaculture production of grass carp nationwide. Further investigations with respect to other potentially toxic metals like arsenic, mercury, and cadmium could address the problem towards additional studies.