Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 274
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Bio Protoc ; 14(11): e5010, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38873014

RESUMO

Neutrophils, constituting 50%-70% of circulating leukocytes, play crucial roles in host defense and exhibit anti-tumorigenic properties. An elevated peripheral blood neutrophil-to-lymphocyte ratio is associated with decreased survival rates in cancer patients. In response to exposure to various antigens, neutrophils release neutrophil granular proteins, which combine to form web-like structures known as neutrophil extracellular traps (NETs). Previously, the relative percentage of NETs was found to be increased in resected tumor tissue samples from patients with gastrointestinal malignancies. The presence of NETs in peripheral blood is indicative of underlying pathological conditions. Hence, employing a non-invasive method to detect NETs in peripheral blood, along with other diagnostic tests, shows potential as a valuable tool not just for identifying different inflammatory disorders but also for assessing disease severity and determining patient suitability for surgical resection. While reliable methods exist for identifying NETs in tissue, accurately quantifying them in whole blood remains challenging. Many previous methods are time-consuming and rely on a limited set of markers that are inadequate for fully characterizing NETs. Therefore, we established a unique sensitive smear immunofluorescence assay based on blood smears to identify NETs in only as little as 2 µL of whole blood. To identify the NET complexes that have enhanced specificities, this combines the use of various antibodies against neutrophil-specific CD15, NET-specific myeloperoxidase (MPO), citrullinated histone H3 (Cit H3), and nuclear DNA. This protocol offers an easy, affordable, rapid, and non-invasive method for identifying NETs; thus, it can be utilized as a diagnostic marker and targeted through various therapeutic approaches for treating human malignancies. Key features • Characterization of neutrophil extracellular traps in whole blood smears through immunofluorescence staining. • Affordable and quantitative approach to neutrophil extracellular trap detection.

2.
Environ Sci Technol ; 58(26): 11685-11694, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38905014

RESUMO

A regular tetrahedron model was established to pierce the fractionation of dissolved organic matter (DOM) among quaternary components by using high-resolution mass spectrometry. The model can stereoscopically visualize molecular formulas of DOM to show the preference to each component according to the position in a regular tetrahedron. A classification method was subsequently developed to divide molecular formulas into 15 categories related to fractionation ratios, the relative change of which was demonstrated to be convergent with the uncertainty of mass peak area. The practicality of the regular tetrahedron model was verified by seven kinds of sludge from waste leachate treatment and sewage wastewater treatment plants by using stratification of extracellular polymeric substances coupled with Orbitrap MS as an example, presenting the DOM chemodiversity in stratified sludge flocs. Sensitivity analysis proved that classification results were relatively stable with the perturbation of four model parameters. Multinomial logistic regression analysis could further help identify the effect of molecular properties on the fractionation of DOM based on the classification results of the regular tetrahedron model. This model offers a methodology for the assessment of specificity of sequential extraction on DOM from solid or semisolid components and simplifies the complex mathematical expression of fractionation coefficients for quaternary components.


Assuntos
Espectrometria de Massas , Esgotos , Esgotos/química , Compostos Orgânicos/química , Fracionamento Químico , Modelos Teóricos , Águas Residuárias/química
3.
Alzheimers Dement ; 20(7): 4411-4422, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38864416

RESUMO

INTRODUCTION: Brain-derived extracellular vesicles (BEVs) in blood allows for minimally-invasive investigations of central nervous system (CNS) -specific markers of age-related neurodegenerative diseases (NDDs). Polymer-based EV- and immunoprecipitation (IP)-based BEV-enrichment protocols from blood have gained popularity. We systematically investigated protocol consistency across studies, and determined CNS-specificity of proteins associated with these protocols. METHODS: NDD articles investigating BEVs in blood using polymer-based and/or IP-based BEV enrichment protocols were systematically identified, and protocols compared. Proteins used for BEV-enrichment and/or post-enrichment were assessed for CNS- and brain-cell-type-specificity, extracellular domains (ECD+), and presence in EV-databases. RESULTS: A total of 82.1% of studies used polymer-based (ExoQuick) EV-enrichment, and 92.3% used L1CAM for IP-based BEV-enrichment. Centrifugation times differed across studies. A total of 26.8% of 82 proteins systematically identified were CNS-specific: 50% ECD+, 77.3% were listed in EV-databases. CONCLUSIONS: We identified protocol steps requiring standardization, and recommend additional CNS-specific proteins that can be used for BEV-enrichment or as BEV-biomarkers. HIGHLIGHTS: Across NDDs, we identified protocols commonly used for EV/BEV enrichment from blood. We identified protocol steps showing variability that require harmonization. We assessed CNS-specificity of proteins used for BEV-enrichment or found in BEV cargo. CNS-specific EV proteins with ECD+ or without were identified. We recommend evaluation of blood-BEV enrichment using these additional ECD+ proteins.


Assuntos
Biomarcadores , Encéfalo , Vesículas Extracelulares , Doenças Neurodegenerativas , Vesículas Extracelulares/metabolismo , Humanos , Doenças Neurodegenerativas/sangue , Biomarcadores/sangue
4.
Biomolecules ; 14(6)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38927026

RESUMO

Mesenchymal stem/stromal cell-derived small extracellular vesicles (MSC-sEVs) are promising therapeutic agents. In this study, we investigated how the administration route of MSC-sEVs affects their therapeutic efficacy in a mouse model of bleomycin (BLM)-induced skin scleroderma (SSc). We evaluated the impact of topical (TOP), subcutaneous (SC), and intraperitoneal (IP) administration of MSC-sEVs on dermal fibrosis, collagen density, and thickness. All three routes of administration significantly reduced BLM-induced fibrosis in the skin, as determined by Masson's Trichrome staining. However, only TOP administration reduced BLM-induced dermal collagen density, with no effect on dermal thickness observed for all administration routes. Moreover, SC, but not TOP or IP administration, increased anti-inflammatory profibrotic CD163+ M2 macrophages. These findings indicate that the administration route influences the therapeutic efficacy of MSC-sEVs in alleviating dermal fibrosis, with TOP administration being the most effective, and this efficacy is not mediated by M2 macrophages. Since both TOP and SC administration target the skin, the difference in their efficacy likely stems from variations in MSC-sEV delivery in the skin. Fluorescence-labelled TOP, but not SC MSC-sEVs when applied to skin explant cultures, localized in the stratum corneum. Hence, the superior efficacy of TOP over SC MSC-sEVs could be attributed to this localization. A comparison of the proteomes of stratum corneum and MSC-sEVs revealed the presence of >100 common proteins. Most of these proteins, such as filaggrin, were known to be crucial for maintaining skin barrier function against irritants and toxins, thereby mitigating inflammation-induced fibrosis. Therefore, the superior efficacy of TOP MSC-sEVs over SC and IP MSC-sEVs against SSc is mediated by the delivery of proteins to the stratum corneum to reinforce the skin barrier.


Assuntos
Bleomicina , Vesículas Extracelulares , Células-Tronco Mesenquimais , Pele , Animais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Camundongos , Vesículas Extracelulares/metabolismo , Pele/patologia , Pele/metabolismo , Pele/efeitos dos fármacos , Modelos Animais de Doenças , Fibrose , Feminino , Proteínas Filagrinas , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Vias de Administração de Medicamentos , Humanos
5.
J Thromb Thrombolysis ; 57(6): 936-946, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38853210

RESUMO

Inflammation including immunothrombosis by neutrophil extracellular traps (NETs) has important implications in acute ischemic stroke and can affect reperfusion status, susceptibility to stroke associated infections (SAI) as well as functional clinical outcome. NETs were shown to be prevalent in stroke thrombi and NET associated markers were found in stroke patients' blood. However, little is known whether blood derived NET markers reflect the amount of NETs in thrombi. Conclusions from blood derived markers to thrombus composition might open avenues for novel strategies in diagnostic and therapeutic approaches. We prospectively recruited 166 patients with acute ischemic stroke undergoing mechanical thrombectomy between March 2018 and May 2021. Available thrombi (n = 106) were stained for NET markers DNA-histone-1 complexes and myeloperoxidase (MPO). Cell free DNA (cfDNA), deoxyribonuclease (DNase) activity, MPO-histone complexes and a cytokine-panel were measured before thrombectomy and after seven days. Clinical data, including stroke etiology, reperfusion status, SAI and functional outcome after rehabilitation, were collected of all patients. NET markers were present in all thrombi. At onset the median concentration of cfDNA in blood was 0.19 µg/ml increasing to 0.30 µg/ml at 7 days. Median DNase activity at onset was 4.33 pmol/min/ml increasing to 4.96 pmol/min/ml at 7 days. Within thrombi DNA-histone-1 complexes and MPO correlated with each other (ρ = 0.792; p < 0.001). Moreover, our study provides evidence for an association between the amount of NETs and endogenous DNase activity in blood with amounts of NETs in cerebral thrombi. However, these associations need to be confirmed in larger cohorts, to investigate the potential clinical implications for individualized therapeutic and diagnostic approaches in acute ischemic stroke.


Assuntos
Biomarcadores , Armadilhas Extracelulares , AVC Isquêmico , Humanos , Armadilhas Extracelulares/metabolismo , Biomarcadores/sangue , Masculino , Feminino , Idoso , AVC Isquêmico/sangue , AVC Isquêmico/diagnóstico , Pessoa de Meia-Idade , Estudos Prospectivos , Peroxidase/sangue , Idoso de 80 Anos ou mais , Ácidos Nucleicos Livres/sangue , Trombectomia , Trombose/sangue , Trombose/diagnóstico , Neutrófilos/metabolismo
6.
Biofabrication ; 16(3)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38876096

RESUMO

Recent advancements in 3D cancer modeling have significantly enhanced our ability to delve into the intricacies of carcinogenesis. Despite the pharmaceutical industry's substantial investment of both capital and time in the drug screening and development pipeline, a concerning trend persists: drug candidates screened on conventional cancer models exhibit a dismal success rate in clinical trials. One pivotal factor contributing to this discrepancy is the absence of drug testing on pathophysiologically biomimetic 3D cancer models during pre-clinical stages. Unfortunately, current manual methods of 3D cancer modeling, such as spheroids and organoids, suffer from limitations in reproducibility and scalability. In our study, we have meticulously developed 3D bioprinted breast cancer model utilizing decellularized adipose tissue-based hydrogel obtained via a detergent-free decellularization method. Our innovative printing techniques allows for rapid, high-throughput fabrication of 3D cancer models in a 96-well plate format, demonstrating unmatched scalability and reproducibility. Moreover, we have conducted extensive validation, showcasing the efficacy of our platform through drug screening assays involving two potent anti-cancer drugs, 5-Fluorouracil and PRIMA-1Met. Notably, our platform facilitates effortless imaging and gene expression analysis, streamlining the evaluation process. In a bid to enhance the relevance of our cancer model, we have introduced a heterogeneous cell population into the DAT-based bioink. Through meticulous optimization and characterization, we have successfully developed a biomimetic immunocompetent breast cancer model, complete with microenvironmental cues and diverse cell populations. This breakthrough paves the way for rapid multiplex drug screening and the development of personalized cancer models, marking a paradigm shift in cancer research and pharmaceutical development.


Assuntos
Neoplasias da Mama , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Feminino , Bioimpressão , Ensaios de Triagem em Larga Escala/métodos , Impressão Tridimensional , Ensaios de Seleção de Medicamentos Antitumorais , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Hidrogéis/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Engenharia Tecidual , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Modelos Biológicos , Reprodutibilidade dos Testes
7.
J Transl Med ; 22(1): 487, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773585

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) causes significant cancer mortality worldwide. Cancer organoids can serve as useful disease models by high costs, complexity, and contamination risks from animal-derived products and extracellular matrix (ECM) that limit its applications. On the other hand, synthetic ECM alternatives also have limitations in mimicking native biocomplexity. This study explores the development of a physiologically relevant HCC organoid model using plasma-derived extracellular matrix as a scaffold and nutritive biomatrix with different cellularity components to better mimic the heterogenous HCC microenvironment. Plasma-rich platelet is recognized for its elevated levels of growth factors, which can promote cell proliferation. By employing it as a biomatrix for organoid culture there is a potential to enhance the quality and functionality of organoid models for diverse applications in biomedical research and regenerative medicine and to better replicate the heterogeneous microenvironment of HCC. METHOD: To generate the liver cancer organoids, HUH-7 hepatoma cells were cultured alone (homogenous model) or with human bone marrow-derived mesenchymal stromal cells and human umbilical vein endothelial cells (heterogeneous model) in plasma-rich platelet extracellular matrix (ECM). The organoids were grown for 14 days and analyzed for cancer properties including cell viability, invasion, stemness, and drug resistance. RESULTS: HCC organoids were developed comprising HUH-7 hepatoma cells with or without human mesenchymal stromal and endothelial cells in plasma ECM scaffolds. Both homogeneous (HUH-7 only) and heterogeneous (mixed cellularity) organoids displayed viability, cancer hallmarks, and chemoresistance. The heterogeneous organoids showed enhanced invasion potential, cancer stem cell populations, and late-stage HCC genetic signatures versus homogeneous counterparts. CONCLUSION: The engineered HCC organoids system offers a clinically relevant and cost-effective model to study liver cancer pathogenesis, stromal interactions, and drug resistance. The plasma ECM-based culture technique could enable standardized and reproducible HCC modeling. It could also provide a promising option for organoid culture and scaling up.


Assuntos
Carcinoma Hepatocelular , Análise Custo-Benefício , Matriz Extracelular , Neoplasias Hepáticas , Modelos Biológicos , Organoides , Humanos , Organoides/patologia , Matriz Extracelular/metabolismo , Neoplasias Hepáticas/patologia , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Células Endoteliais da Veia Umbilical Humana , Animais , Células-Tronco Mesenquimais/citologia
8.
bioRxiv ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38746341

RESUMO

Extracellular vesicles (EVs) are particles secreted by all cells that carry bioactive cargo and facilitate intercellular communication with roles in normal physiology and disease pathogenesis. EVs have tremendous diagnostic and therapeutic potential and accordingly, the EV field has grown exponentially in recent years. Bulk assays lack the sensitivity to detect rare EV subsets relevant to disease, and while single EV analysis techniques remedy this, they are undermined by complicated detection schemes often coupled with prohibitive instrumentation. To address these issues, we propose a microfluidic technique for EV characterization called 'catch and display for liquid biopsy (CAD-LB)'. CAD-LB rapidly captures fluorescently labeled EVs in the similarly-sized pores of an ultrathin silicon nitride membrane. Minimally processed sample is introduced via pipette injection into a simple microfluidic device which is directly imaged using fluorescence microscopy for a rapid assessment of EV number and biomarker colocalization. In this work, nanoparticles were first used to define the accuracy and dynamic range for counting and colocalization by CAD-LB. Following this, the same assessments were made for purified EVs and for unpurified EVs in plasma. Biomarker detection was validated using CD9 in which Western blot analysis confirmed that CAD-LB faithfully recapitulated differing expression levels among samples. We further verified that CAD-LB captured the known increase in EV-associated ICAM-1 following the cytokine stimulation of endothelial cells. Finally, to demonstrate CAD-LB's clinical potential, we show that EV biomarkers indicative of immunotherapy responsiveness are successfully detected in the plasma of bladder cancer patients undergoing immune checkpoint blockade.

9.
Cell Biochem Funct ; 42(4): e4038, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38736214

RESUMO

The generation of insulin-producing cells (IPCs) is an attractive approach for replacing damaged ß cells in diabetic patients. In the present work, we introduced a hybrid platform of decellularized amniotic membrane (dAM) and fibrin encapsulation for differentiating adipose tissue-derived stem cells (ASCs) into IPCs. ASCs were isolated from healthy donors and characterized. Human AM was decellularized, and its morphology, DNA, collagen, glycosaminoglycan (GAG) contents, and biocompatibility were evaluated. ASCs were subjected to four IPC differentiation methods, and the most efficient method was selected for the experiment. ASCs were seeded onto dAM, alone or encapsulated in fibrin gel with various thrombin concentrations, and differentiated into IPCs according to a method applying serum-free media containing 2-mercaptoethanol, nicotinamide, and exendin-4. PDX-1, GLUT-2 and insulin expression were evaluated in differentiated cells using real-time PCR. Structural integrity and collagen and GAG contents of AM were preserved after decellularization, while DNA content was minimized. Cultivating ASCs on dAM augmented their attachment, proliferation, and viability and enhanced the expression of PDX-1, GLUT-2, and insulin in differentiated cells. Encapsulating ASCs in fibrin gel containing 2 mg/ml fibrinogen and 10 units/ml thrombin increased their differentiation into IPCs. dAM and fibrin gel synergistically enhanced the differentiation of ASCs into IPCs, which could be considered an appropriate strategy for replacing damaged ß cells.


Assuntos
Tecido Adiposo , Diferenciação Celular , Fibrina , Insulina , Células-Tronco , Humanos , Diferenciação Celular/efeitos dos fármacos , Fibrina/química , Fibrina/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Células-Tronco/metabolismo , Células-Tronco/citologia , Insulina/metabolismo , Células Cultivadas , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/citologia , Matriz Extracelular Descelularizada/química , Matriz Extracelular Descelularizada/metabolismo , Matriz Extracelular Descelularizada/farmacologia , Âmnio/citologia , Âmnio/metabolismo , Âmnio/química
10.
Phytomedicine ; 130: 155750, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38797028

RESUMO

BACKGROUND: Plant-derived extracellular vesicles (PDEs) are expected to be a compelling alternative for cancer treatment due to their low cytotoxicity, low immunogenicity, high yield, and potential anti-tumor efficacy. Despite the significant advantages of PDEs, the reliable evidence for PDEs as promising anti-tumor approach remains unsystematic and insufficient. Some challenges remain for the clinical application and large-scale industrial production of PDEs. PURPOSE: Through systematic evaluation and meta-analysis, the objective was to provide scientific, systematic and reliable preclinical evidence to support the clinical use of PDEs in cancer therapy. METHODS: The search for relevant literature, conducted up to March 2024, encompassed various databases including Web of Science, the Cochrane Library, Embase, PubMed, CNKI, Wanfang Data, and the China Science and Technology Journal Database. The SYRCLE´s risk of bias tool was used to assess the methodological quality of the animal studies. For overall effect analysis and subgroup analysis, RevMan 5.4 and Stata 12.0 were utilized. RESULTS: The analysis incorporated a total of 38 articles, comprising 29 in vivo studies and 9 in vitro studies. Meta-analysis indicated that PDEs significantly reduced cancer cell activity and induced apoptosis, reduced tumor volume and tumor weight when used as therapeutic agents, as well as exhibited synergistic anti-cancer via combination therapy. Additionally, PDEs-drugs exerted stronger inhibition of tumor volume compared to the free drug or commercial liposome-drugs. Their therapeutic effects were closely related to regulating tumor cell biological behavior and remodeling the tumor microenvironment. The safety was associated with administration route of PDEs, oral administration was currently preferred until more in-depth studies on the safety of other methods are conducted. CONCLUSIONS: The meta-analysis revealed that PDEs have systematic and reliable preclinical evidence in preclinical studies of cancer therapy, and their efficacy and certain safety could support the clinical application of PDEs in cancer therapy. Of course, further researches are required for large-scale industrial production to meet the needs of clinical applications.


Assuntos
Vesículas Extracelulares , Neoplasias , Humanos , Animais , Neoplasias/tratamento farmacológico , Apoptose/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia
11.
Sci Total Environ ; 934: 173095, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38729370

RESUMO

Deep dewatering of Waste Activated Sludge (WAS) through mechanical processes remains inefficient, primarily due to the formation of a stable hydrogen bonding network between the biopolymers and water, which consequently leads to significant water trapped by Extracellular Polymeric Substances (EPS). In this study, a novel and recyclable treatment for WAS based on Ionic Liquids (ILs) was established, named IL-biphasic aqueous system (IL-ABS) treatment. Specifically, the IL-ABS formed in WAS facilitated rapid and efficient in-situ deep dewatering while concurrently recovering hydroxyapatite. The water content decreased from an initial 98.27 % to 65.35 % with IL-ABS, formed by 1-Butyl-3-methylimidazolium bromide (BmimBr) and K3PO4 synthesized from waste H3PO4. Moreover, the recycled BmimBr maintaining the water content of the dewatered sludge consistently between 65.61 % and 67.25 % across five cycles, exhibited remarkable reproducibility. Through three-dimensional excitation-emission matrix, lactate dehydrogenase analyses and confocal laser scanning microscopy, the high concentration of BmimBr in the upper phase effectively disrupted the cells and EPS, which exposed protein and polysaccharide on the EPS surface. Subsequently, the K3PO4 in the lower phase led to an enhanced salting-out effect in WAS. Furthermore, FT-IR analysis revealed that K3PO4 disrupted the original hydrogen bonds between EPS and water. Then, BmimBr formed numerous hydrogen bonds with the sludge flocs, leading to deep dewatering and agglomeration of the sludge flocs during the unique phase separation process of IL-ABS. Notably, sludge-derived hydroxyapatite product exhibited remarkable adsorption capacity for prevalent heavy metal contaminants such as Pb2+, Cd2+ and Cu2+, with efficiencies comparable to those of commercial hydroxyapatite, thereby achieving the resource utilization of waste H3PO4. Moreover, economic calculations demonstrated the suitability of this novel treatment. This innovative treatment exhibits potential for practical applications in the non-mechanical deep dewatering of WAS.

12.
Sci Rep ; 14(1): 12171, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806547

RESUMO

Upon implanting tissue-engineered heart valves (TEHVs), blood-derived macrophages are believed to orchestrate the remodeling process. They initiate the immune response and mediate the remodeling of the TEHV, essential for the valve's functionality. The exact role of another macrophage type, the tissue-resident macrophages (TRMs), has not been yet elucidated even though they maintain the homeostasis of native tissues. Here, we characterized the response of hTRM-like cells in contact with a human tissue engineered matrix (hTEM). HTEMs comprised intracellular peptides with potentially immunogenic properties in their ECM proteome. Human iPSC-derived macrophages (iMφs) could represent hTRM-like cells in vitro and circumvent the scarcity of human donor material. iMφs were derived and after stimulation they demonstrated polarization towards non-/inflammatory states. Next, they responded with increased IL-6/IL-1ß secretion in separate 3/7-day cultures with longer production-time-hTEMs. We demonstrated that iMφs are a potential model for TRM-like cells for the assessment of hTEM immunocompatibility. They adopt distinct pro- and anti-inflammatory phenotypes, and both IL-6 and IL-1ß secretion depends on hTEM composition. IL-6 provided the highest sensitivity to measure iMφs pro-inflammatory response. This platform could facilitate the in vitro immunocompatibility assessment of hTEMs and thereby showcase a potential way to achieve safer clinical translation of TEHVs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Macrófagos , Engenharia Tecidual , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/imunologia , Engenharia Tecidual/métodos , Macrófagos/imunologia , Macrófagos/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Células Cultivadas , Matriz Extracelular/metabolismo , Diferenciação Celular , Alicerces Teciduais/química
13.
Int J Mol Sci ; 25(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612536

RESUMO

The endometrial epithelium and underlying stroma undergo profound changes to support and limit embryo adhesion and invasion, which occur in the secretory phase of the menstrual cycle during the window of implantation. This coincides with a peak in progesterone and estradiol production. We hypothesized that the interplay between hormone-induced changes in the mechanical properties of the endometrial epithelium and stroma supports this process. To study it, we used hormone-responsive endometrial adenocarcinoma-derived Ishikawa cells growing on substrates of different stiffness. We showed that Ishikawa monolayers on soft substrates are more tightly clustered and uniform than on stiff substrates. Probing for mechanical alterations, we found accelerated stress-relaxation after apical nanoindentation in hormone-stimulated monolayers on stiff substrates. Traction force microscopy furthermore revealed an increased number of foci with high traction in the presence of estradiol and progesterone on soft substrates. The detection of single cells and small cell clusters positive for the intermediate filament protein vimentin and the progesterone receptor further underscored monolayer heterogeneity. Finally, adhesion assays with trophoblast-derived AC-1M-88 spheroids were used to examine the effects of substrate stiffness and steroid hormones on endometrial receptivity. We conclude that the extracellular matrix and hormones act together to determine mechanical properties and, ultimately, embryo implantation.


Assuntos
Matriz Extracelular , Progesterona , Feminino , Humanos , Epitélio , Ciclo Menstrual , Estradiol
14.
Methods Mol Biol ; 2764: 77-105, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38393590

RESUMO

Over the past 50 years, researchers from the mammary gland field have launched a collection of distinctive 3D cell culture systems to study multiple aspects of mammary gland physiology and disease. As our knowledge about the mammary gland evolves, more sophisticated 3D cell culture systems are required to answer more and more complex questions. Nowadays, morphologically complex mammary organoids can be generated in distinct 3D settings, along with reproduction of multiple aspects of the gland microenvironment. Yet, each 3D culture protocol comes with its advantages and limitations, where some culture systems are best suited to study stemness potential, whereas others are tailored towards the study of mammary gland morphogenesis. Therefore, prior to starting a 3D mammary culture experiment, it is important to consider and select the ideal culture model to address the biological question of interest. The number and technical requirements of novel 3D cell culture methods vastly increased over the past decades, making it currently challenging and time consuming to identify the best experimental testing. In this chapter, we provide a summary of the most promising murine and human 3D organoid models that are currently used in mammary gland biology research. For each model, we will provide a brief description of the protocol and an overview of the expected morphological outcome, the advantages of the model, and the potential pitfalls, to guide the reader to the best model of choice for specific applications.


Assuntos
Glândulas Mamárias Animais , Glândulas Mamárias Humanas , Humanos , Camundongos , Animais , Mama , Organoides , Técnicas de Cultura de Células/métodos , Árvores de Decisões
15.
Anal Chim Acta ; 1296: 342337, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401929

RESUMO

As a prerequisite for extracellular vesicle (EV) -based studies and diagnosis, effective isolation, enrichment and retrieval of EV biomarkers are crucial to subsequent analyses, such as miRNA-based liquid biopsy for non-small-cell lung cancer (NSCLC). However, most conventional approaches for EV isolation suffer from lengthy procedure, high cost, and intense labor. Herein, we introduce the digital microfluidic (DMF) technology to EV pretreatment protocols and demonstrate a rapid and fully automated sample preparation platform for clinical tumor liquid biopsy. Combining a reusable DMF chip technique with a low-cost EV isolation and miRNA preparation protocol, the platform completes automated sample processing in 20-30 min, supporting immediate RT-qPCR analyses on EV-derived miRNAs (EV-miRNAs). The utility and reliability of the platform was validated via clinical sample processing for EV-miRNA detection. With 23 tumor and 20 non-tumor clinical plasma samples, we concluded that EV-miR-486-5p and miR-21-5p are effective biomarkers for NSCLC with a small sample volumn (20-40 µL). The result was consistent to that of a commercial exosome miRNA extraction kit. These results demonstrate the effectiveness of DMF in EV pretreatment for miRNA detection, providing a facile solution to EV isolation for liquid biopsy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Vesículas Extracelulares , Neoplasias Pulmonares , MicroRNAs , Humanos , MicroRNAs/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Análise Custo-Benefício , Microfluídica , Reprodutibilidade dos Testes , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Biomarcadores
16.
ACS Chem Neurosci ; 15(4): 844-853, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38314550

RESUMO

Parathyroid hormone (PTH) type 1 receptor (PTH1R), as a typical class B1 G protein-coupled receptor (GPCR), is responsible for regulating bone turnover and maintaining calcium homeostasis, and its dysregulation has been implicated in the development of several diseases. The extracellular domain (ECD) of PTH1R is crucial for the recognition and binding of ligands, and the receptor may exhibit an autoinhibited state with the closure of the ECD in the absence of ligands. However, the correlation between ECD conformations and PTH1R activation remains unclear. Thus, this study combines enhanced sampling molecular dynamics (MD) simulations and Markov state models (MSMs) to reveal the possible relevance between the ECD conformations and the activation of PTH1R. First, 22 intermediate structures are generated from the autoinhibited state to the active state and conducted for 10 independent 200 ns simulations each. Then, the MSM is constructed based on the cumulative 44 µs simulations with six identified microstates. Finally, the potential interplay between ECD conformational changes and PTH1R activation as well as cryptic allosteric pockets in the intermediate states during receptor activation is revealed. Overall, our findings reveal that the activation of PTH1R has a specific correlation with ECD conformational changes and provide essential insights for GPCR biology and developing novel allosteric modulators targeting cryptic sites.


Assuntos
Simulação de Dinâmica Molecular , Transdução de Sinais , Receptor Tipo 1 de Hormônio Paratireóideo/química , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Sequência de Aminoácidos , Ligação Proteica , Receptores Acoplados a Proteínas G/metabolismo , Hormônio Paratireóideo/química , Hormônio Paratireóideo/metabolismo
17.
ACS Sens ; 9(3): 1252-1260, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38373338

RESUMO

The monitoring of small extracellular vesicles (sEVs) in medical waste is of great significance for the prevention of the spread of infectious diseases and the treatment of environmental pollutants in medical waste. Highly sensitive and selective detection methods are urgently needed due to the low content of sEVs in waste samples and the complex sample composition. Herein, a glycosyl-imprinted electrochemical sensor was constructed and a novel strategy for rapid, sensitive, and selective sEVs detection was proposed. The characteristic trisaccharide at the end of the glycosyl chain of the glycoprotein carried on the surface of the sEVs was used as the template molecule. The glycosyl-imprinted polymer films was then prepared by electropolymerization with o-phenylenediamine (o-PD) and 3-aminophenylboronic acid (m-APBA) as functional monomers. sEVs were captured by the imprinted cavities through the recognition and adsorption of glycosyl chains of glycoproteins on sEVs. The m-APBA molecule also acted as a signal probe and was then attached on the immobilized glycoprotein on the surface of sEVs by boric acid affinity. The electrochemical signal of m-APBA was amplificated due to the abundant glycoproteins on the surface of sEVs. The detection range of the sensor was 2.1 × 104 to 8.7 × 107 particles/mL, and the limit of detection was 1.7 × 104 particles/mL. The sensor was then applied to the determination of sEVs in medical wastewater and urine, which showed good selectivity, low detection cost, and good sensitivity.


Assuntos
Resíduos de Serviços de Saúde , Impressão Molecular , Águas Residuárias , Impressão Molecular/métodos , Limite de Detecção , Glicoproteínas
18.
Res Sq ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38343828

RESUMO

Background: Immunosuppression is a hallmark of cancer progression. Tumor-derived small extracellular vesicles (sEV), also known as TEX, produce adenosine (ADO) and can mediate tumor-induced immunosuppression. Methods: Here, the ATP pathway of ADO production (ATP◊ADP◊AMP◊ADO) by ecto-nucleotidases carried in sEV was evaluated by a novel method using N6-etheno-ATP (eATP) and N6-etheno-AMP (eAMP) as substrates. The "downstream" N6-etheno-purines (ePurines) were measured by high performance liquid chromatography with fluorescence detection (HPLC-FL). Results: Human melanoma cell-derived TEX (MTEX) metabolized eATP to N6-etheno-ADP (eADP), eAMP and N6-etheno-Adenosine (eADO) more robustly than control keratinocyte cell-derived sEV (CEX); due to accelerated conversion of eATP to eADP and eADP to eAMP MTEX and CEX similarly metabolized eAMP to eADO. Blocking of the ATP pathway with the selective CD39 inhibitor ARL67156 or pan ecto-nucleotidase inhibitor POM-1 normalized the ATP pathway but neither inhibitor completely abolished it. In contrast, inhibition of CD73 by PSB12379 or AMPCP abolished eADO formation in both MTEX and CEX, suggesting that targeting CD73 is the preferred approach to eliminating ADO produced by sEV. Conclusions: The noninvasive, sensitive, and specific assay assessing ePurine metabolism ± ecto-nucleotidase inhibitors in TEX enables the personalized identification of the ecto-nucleotidase primarily involved in ADO production in patients with cancer. The assay could guide precision medicine by determining which purine is the preferred target for inhibitory therapeutic interventions.

19.
Hereditas ; 161(1): 3, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38173016

RESUMO

BACKGROUND: Vascular aging is an important pathophysiological basis for the senescence of various organs and systems in the human body, and it is a common pathogenetic trigger for many chronic diseases in the elderly. METHODS: The extracellular vesicles (EVs) from young and aged umbilical vein endothelial cells were isolated and identified by qPCR the differential expression levels of 47 mRNAs of genes closely related to aging in the two groups. RESULTS: There were significant differences in the expression levels of 18 genes (we noted upregulation in PLA2G12A, TP53BP1, CD144, PDE11A, FPGT, SERPINB4, POLD1, and PPFIBP2 and downregulation in ATP2C2, ROBO2, RRM2, GUCY1B1, NAT1-14, VEGFR2, WTAPP1, CD146, DMC1, and GRIK2). Subsequent qPCR identification of the above-mentioned genes in PBMCs and plasma-EVs from the various age groups revealed that the trend in expression levels in peripheral blood plasma-EVs of the different age groups was approximately the same as that in PBMCs. Of these mRNAs, the expression of four genes-PLA2G12A, TP53BP1, OPRL1, and KIAA0895-was commensurate with increasing age. In contradistinction, the expression trend of four genes (CREG1, PBX1, CD34, and SLIT2) was inversely proportional to the increase in age. Finally, by taking their intersection, we determined that the expression of TP53BP1 was upregulated with increasing human age and that CD34 and PBX1 were downregulated with increasing age. CONCLUSION: Our study indicates that human peripheral blood plasma-EV-derived TP53BP1, CD34, and PBX1 potentially comprise a noninvasive biomarker for assessing and predicting vascular aging.


Assuntos
Células Endoteliais , Vesículas Extracelulares , Idoso , Humanos , Envelhecimento/genética , Biomarcadores/metabolismo , Células Endoteliais/patologia , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patologia , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Antígenos CD34/metabolismo
20.
Radiol Case Rep ; 19(3): 1157-1161, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38259718

RESUMO

Assessment of myocardial viability in patients with myocardial infarction is critical to identify residual ischemic tissue in areas of reduced function and to determine the need for revascularization. We present the case of an 80-year-old man with chest pain and a history of hypertension. Initial evaluation revealed abnormal electrocardiogram findings, and subsequent studies suggested chronic anteroseptal myocardial infarction with reduced cardiac function. Dual-energy cardiac computed tomography was performed to evaluate the coronary arteries and myocardium. Late iodine enhancement images obtained by dual-energy computed tomography showed mixed plaques and severe proximal left anterior descending artery stenosis. Conventional late iodine enhancement imaging was inconclusive, prompting extracellular volume fraction analysis using iodine density imaging. Extracellular volume fraction assessment indicated viable anterior myocardium, leading to successful coronary revascularization. Follow-up demonstrated improved wall motion and ejection fraction. Our study highlights the utility of late iodine enhancement with dual-energy computed tomography in assessing myocardial viability as a noninvasive alternative to magnetic resonance imaging, particularly in patients with contraindications to magnetic resonance imaging. This approach aids in treatment planning, evaluation of efficacy and determination of prognosis in cases of ischemic heart disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA