Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38213154

RESUMO

INTRODUCTION: This work proposes a Double-Gate (DG) MOSFET with a Single Material made of Silicon On-Insulator (SOI). The Lanthanum Oxide material with a high k-dielectric constant has been used as an interface between two gates and the channel. The Monte Carlo analysis has been used to determine the Conduction Band Energy (Ec) profiles and electron sheet carrier densities (ns) for a Silicon channel thickness (tsi) of 10 nm at 0.5 V gate drain-source voltages. The transverse electric fields are weak at the midchannel of DG SOI MOSFETs, where quantum effects are encountered. The Monte Carlo simulation has been confirmed to be effective for high-energy transport. A particle description reproduces the granularity property of the transport for nanoscale modeling. METHODS: This work utilizes a Monte Carlo (MC) Simulation for the proposed Double Gate Single Material Silicon On Insulator MOSFET with (La2O3=2 nm) as dielectric oxide on upper and lower gate material. The electrical properties of the DG SOI MOSFETs with Lanthanum Oxide were analyzed using Monte Carlo simulation, including the conduction band energy, electric field, potential distribution, particle movement, and average velocity. RESULTS: The peak electric field (E) simulation results and an average drift velocity (υavg) of 6Í105 V/cm and 1.6Í107 cm/s were obtained, respectively. The conduction band energy for the operating region of the source has been observed to be 4 % to the drain side, which obtained a value of -0.04 eV at the terminal end. CONCLUSION: This proposed patent design, such as double-gate SOI-based devices, is the best suggestion for significant scalability challenges. Emerging technologies reach the typical DG SOI MOSFET's threshold performance when their geometrical dimensions are in the nanometer region. This device based on nanomaterial compounds has been more submissive than conventional devices. The nanomaterials usage in the design is more suitable for downscaling and reducing packaging density.

2.
J Xray Sci Technol ; 31(4): 837-852, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37248944

RESUMO

BACKGROUND: Due to the wide application of the cone beam computed tomography (CBCT) in clinical practice, it is important to assess radiation dose of CBCT more accurately and efficiently in different clinical applications. OBJECTIVE: This study aims to calculate effective and absorbed doses in CBCT measured in an anthropomorphic phantom using computer-based Monte Carlo (PCXMC) software, and to conduct comparative evaluations of MOSFET (metal- oxide- semiconductor field-effect transistor) and radiophotoluminescence glass dosimeters (RPLGD). METHODS: Effective and absorbed organ doses are compared with those obtained using MOSFET and RPLGD dosimetry in an anthropomorphic phantom given the same exposure settings. Effective and absorbed organ doses from CBCT during scout and main projections are calculated using PCXMC and PCXMCRotation software, respectively. RESULTS: The mean effective dose from CBCT calculated using PCXMC software is 233.8µSv, while the doses calculated using dosimetry (MOSFET and RPLGD) are 266.67µSv and 268.78µSv, respectively. The X-ray source variation is 0.79%. The prescription limits based on the Friedman test for MOSFET and RPLGD pre-points (i.e., in an analytical analysis of diagnostic names in CBCT) are not statistically significant. The calculated correlation coefficient between MOSFET- and RPLGD-derived absorbed dose values with respect to a field of view CBCT parameter of 17×13.5 mm is r = 0.8623. CONCLUSIONS: The study demonstrates that the PCXMC software may be used as an alternative to MOSFET and RPLGD dosimetry for effective and absorbed organ dose estimation in CBCT conducted with a large FOV in an anthropomorphic phantom.


Assuntos
Dosímetros de Radiação , Exposição à Radiação , Doses de Radiação , Método de Monte Carlo , Radiometria/métodos , Tomografia Computadorizada de Feixe Cônico/métodos , Imagens de Fantasmas
3.
Phys Eng Sci Med ; 46(2): 787-800, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36988905

RESUMO

The magnetic field of a transverse MR-linac alters electron trajectories as the photon beam transits through materials, causing lower doses at flat entry surfaces and increased doses at flat beam-exiting surfaces. This study investigated the response of a MOSFET detector, known as the MOSkin™, for high-resolution surface and near-surface percentage depth dose measurements on an Elekta Unity. Simulations with Geant4 and the Monaco treatment planning system (TPS), and EBT-3 film measurements, were also performed for comparison. Measured MOSkin™ entry surface doses, relative to Dmax, were (9.9 ± 0.2)%, (10.1 ± 0.3)%, (11.3 ± 0.6)%, (12.9 ± 1.0)%, and (13.4 ± 1.0)% for 1 × 1 cm2, 3 × 3 cm2, 5 × 5 cm2, 10 × 10 cm2, and 22 × 22 cm2 fields, respectively. For the investigated fields, the maximum percent differences of Geant4, TPS, and film doses extrapolated and interpolated to a depth suitable for skin dose assessment at the beam entry, relative to MOSkin™ measurements at an equivalent depth were 1.0%, 2.8%, and 14.3%, respectively, and at a WED of 199.67 mm at the beam exit, 3.2%, 3.7% and 5.7%, respectively. The largest measured increase in exit dose, due to the electron return effect, was 15.4% for the 10 × 10 cm2 field size using the MOSkin™ and 17.9% for the 22 × 22 cm2 field size, using Geant4 calculations. The results presented in the study validate the suitability of the MOSkin™ detector for transverse MR-linac surface dosimetry.


Assuntos
Imageamento por Ressonância Magnética , Radiometria , Doses de Radiação , Imageamento por Ressonância Magnética/métodos , Método de Monte Carlo , Imagens de Fantasmas
4.
Phys Eng Sci Med ; 44(4): 1061-1069, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34351614

RESUMO

This study aims to calculate the dose delivered to the upstream surface of a biocompatible flexible absorber covering lead for electron beam treatment of skin and subcutaneous tumour lesions for head and neck. Silicone (Ecoflex™ 00-30, Smooth-On, Easton, PA, USA) was used to cover the lead to absorb backscattered electrons from lead. A 3D printer (Zortrax M300, Zortrax, Olsztyn, Poland) was used to fabricate the lead shield. Analytic calculation, simplified Monte Carlo (MC) simulation, and detailed MC simulation which includes a modeling of metal-oxide-semiconductor field-effect transistor (MOSFET) detector were performed to determine the electron backscatter factor (EBF) for 6 MeV and 9 MeV electron beams of a Varian iX Silhouette. MCNP6.2 was used to calculate the EBF and corresponding measurements were carried out by using MOSFET detectors. The EBF was experimentally measured by the ratio of dose at the upstream surface of the silicone to the same point without the presence of the lead shield. The results derived by all four methods agreed within 2.8% for 6 MeV and 3.4% for 9 MeV beams. In detailed MC simulations, for 6 MeV, dose to the surface of 7-mm-thick absorber was 103.7 [Formula: see text] 1.9% compared to dose maximum (Dmax) without lead. For 9 MeV, the dose to the surface of the 10-mm-thick absorber was 104.1 [Formula: see text] 2.1% compared to Dmax without lead. The simplified MC simulation was recommended for practical treatment planning due to its acceptable calculation accuracy and efficiency. The simplified MC simulation was completed within 20 min using parallel processing with 80 CPUs, while the detailed MC simulation required 40 h to be done. In this study, we outline the procedures to use the lead shield covered by silicone in clinical practice from fabrication to dose calculation.


Assuntos
Elétrons , Silicones , Método de Monte Carlo , Impressão Tridimensional , Dosagem Radioterapêutica
5.
Int J Comput Assist Radiol Surg ; 16(1): 1-10, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33274400

RESUMO

PURPOSE: As the spectrum of X-ray procedures has increased both for diagnostic and for interventional cases, more attention is paid to X-ray dose management. While the medical benefit to the patient outweighs the risk of radiation injuries in almost all cases, reproducible studies on organ dose values help to plan preventive measures helping both patient as well as staff. Dose studies are either carried out retrospectively, experimentally using anthropomorphic phantoms, or computationally. When performed experimentally, it is helpful to combine them with simulations validating the measurements. In this paper, we show how such a dose simulation method, carried out together with actual X-ray experiments, can be realized to obtain reliable organ dose values efficiently. METHODS: A Monte Carlo simulation technique was developed combining down-sampling and super-resolution techniques for accelerated processing accompanying X-ray dose measurements. The target volume is down-sampled using the statistical mode first. The estimated dose distribution is then up-sampled using guided filtering and the high-resolution target volume as guidance image. Second, we present a comparison of dose estimates calculated with our Monte Carlo code experimentally obtained values for an anthropomorphic phantom using metal oxide semiconductor field effect transistor dosimeters. RESULTS: We reconstructed high-resolution dose distributions from coarse ones (down-sampling factor 2 to 16) with error rates ranging from 1.62 % to 4.91 %. Using down-sampled target volumes further reduced the computation time by 30 % to 60 %. Comparison of measured results to simulated dose values demonstrated high agreement with an average percentage error of under [Formula: see text] for all measurement points. CONCLUSIONS: Our results indicate that Monte Carlo methods can be accelerated hardware-independently and still yield reliable results. This facilitates empirical dose studies that make use of online Monte Carlo simulations to easily cross-validate dose estimates on-site.


Assuntos
Imagens de Fantasmas , Doses de Radiação , Radiometria/métodos , Simulação por Computador , Humanos , Método de Monte Carlo , Estudos Retrospectivos , Raios X
6.
J Appl Clin Med Phys ; 21(1): 127-135, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31854078

RESUMO

PURPOSE: With the increasing use of MR-guided radiation therapy (MRgRT), it becomes important to understand and explore accuracy of medical dosimeters in the presence of magnetic field. The purpose of this work is to characterize metal-oxide-semiconductor field-effect transistors (MOSFETs) in MRgRT systems at 0.345 T magnetic field strength. METHODS: A MOSFET dosimetry system, developed by Best Medical Canada for in-vivo patient dosimetry, was used to study various commissioning tests performed on a MRgRT system, MRIdian® Linac. We characterized the MOSFET dosimeter with different cable lengths by determining its calibration factor, monitor unit linearity, angular dependence, field size dependence, percentage depth dose (PDD) variation, output factor change, and intensity modulated radiation therapy quality assurance (IMRT QA) verification for several plans. MOSFET results were analyzed and compared with commissioning data and Monte Carlo calculations. RESULTS: MOSFET measurements were not found to be affected by the presence of 0.345 T magnetic field. Calibration factors were similar for different cable length dosimeters either placed at the parallel or perpendicular direction to the magnetic field, with variations of less than 2%. The detector showed good linearity (R2  = 0.999) for 100-600 MUs range. Output factor measurements were consistent with ionization chamber data within 2.2%. MOSFET PDD measurements were found to be within 1% for 1-15 cm depth range in comparison to ionization chamber. MOSFET normalized angular response matched thermoluminescent detector (TLD) response within 5.5%. The IMRT QA verification data for the MRgRT linac showed that the percentage difference between ionization chamber and MOSFET was 0.91%, 2.05%, and 2.63%, respectively for liver, spine, and mediastinum. CONCLUSION: MOSFET dosimeters are not affected by the 0.345 T magnetic field in MRgRT system. They showed physics parameters and performance comparable to TLD and ionization chamber; thus, they constitute an alternative to TLD for real-time in-vivo dosimetry in MRgRT procedures.


Assuntos
Aceleradores de Partículas/instrumentação , Imagens de Fantasmas , Garantia da Qualidade dos Cuidados de Saúde/normas , Dosímetros de Radiação/normas , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Calibragem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Método de Monte Carlo , Dosagem Radioterapêutica , Semicondutores
7.
Int J Comput Assist Radiol Surg ; 14(11): 1859-1869, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31377964

RESUMO

PURPOSE: With X-ray radiation protection and dose management constantly gaining interest in interventional radiology, novel procedures often undergo prospective dose studies using anthropomorphic phantoms to determine expected reference organ-equivalent dose values. Due to inherent uncertainties, such as impact of exact patient positioning, generalized geometry of the phantoms, limited dosimeter positioning options, and composition of tissue-equivalent materials, these dose values might not allow for patient-specific risk assessment. Therefore, first the aim of this study is to quantify the influence of these parameters on local X-ray dose to evaluate their relevance in the assessment of patient-specific organ doses. Second, this knowledge further enables validating a simulation approach, which allows employing physiological material models and patient-specific geometries. METHODS: Phantom dosimetry experiments using MOSFET dosimeters were conducted reproducing imaging scenarios in prostatic arterial embolization (PAE). Associated organ-equivalent dose of prostate, bladder, colon, and skin was determined. Dose deviation induced by possible small displacements of the patient was reproduced by moving the X-ray source. Dose deviation induced by geometric and material differences was investigated by analyzing two different commonly used phantoms. We reconstructed the experiments using Monte Carlo (MC) simulations, a reference male geometry, and different material properties to validate simulations and experiments against each other. RESULTS: Overall, MC-simulated organ dose values are in accordance with the measured ones for the majority of cases. Marginal displacements of X-ray source relative to the phantoms lead to deviations of 6-135% in organ dose values, while skin dose remains relatively constant. Regarding the impact of phantom material composition, underestimation of internal organ dose values by 12-20% is prevalent in all simulated phantoms. Skin dose, however, can be estimated with low deviation of 1-8% at least for two materials. CONCLUSIONS: Prospective reference dose studies might not extend to precise patient-specific dose assessment. Therefore, online organ dose assessment tools, based on advanced patient modeling and MC methods, are desirable.


Assuntos
Embolização Terapêutica/métodos , Imagens de Fantasmas , Próstata/irrigação sanguínea , Hiperplasia Prostática/diagnóstico por imagem , Radiografia Intervencionista/métodos , Adulto , Relação Dose-Resposta à Radiação , Humanos , Masculino , Método de Monte Carlo , Estudos Prospectivos , Próstata/diagnóstico por imagem , Hiperplasia Prostática/terapia , Doses de Radiação , Radiometria
8.
Med Phys ; 46(11): 5216-5226, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31442300

RESUMO

PURPOSE: Accurate, patient-specific radiation dosimetry for CT scanning is critical to optimize radiation doses and balance dose against image quality. While Monte Carlo (MC) simulation is often used to estimate doses from CT, comparison of estimates to experimentally measured values is lacking for advanced CT scanners incorporating novel design features. We aimed to compare radiation dose estimates from MC simulation to doses measured in physical anthropomorphic phantoms using metal-oxide semiconductor field-effect transistors (MOSFETs) in a 256-slice CT scanner. METHODS: Fifty MOSFETs were placed in organs within tissue-equivalent anthropomorphic adult and pediatric radiographic phantoms, which were scanned using a variety of chest, cardiac, abdomen, brain, and whole-body protocols on a 256-slice system. MC computations were performed on voxelized CT reconstructions of the phantoms using a highly parallel MC tool developed specifically for diagnostic X-ray energies and rapid computation. Doses were compared between MC estimates and physical measurements. RESULTS: The average ratio of MOSFET to MC dose in the in-field region was close to 1 (range, 0.96-1.12; mean ± SD, 1.01 ± 0.04), indicating outstanding agreement between measured and simulated doses. The difference between measured and simulated doses tended to increase with distance from the in-field region. The error in the MC simulations due to the limited number of simulated photons was less than 1%. The errors in the MOSFET dose determinations in the in-field region for a single scan were mainly due to the calibration method and were typically about 6% (8% if the error in the reading of the ionization chamber that was used for the MOSFET calibration was included). CONCLUSIONS: Radiation dose estimation using a highly parallelized MC method is strongly correlated with experimental measurements in physical adult and infant anthropomorphic phantoms for a wide range of scans performed on a 256-slice CT scanner. Incorporation into CT scanners of radiation-dose distribution estimation, employing the scanner's reconstructed images of the patient, may offer the potential for accurate patient-specific CT dosimetry.


Assuntos
Metais/química , Método de Monte Carlo , Óxidos , Imagens de Fantasmas , Doses de Radiação , Tomografia Computadorizada por Raios X/instrumentação , Transistores Eletrônicos , Adulto , Calibragem , Humanos , Radiometria , Imagem Corporal Total
9.
Med Phys ; 45(4): 1724-1737, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29405311

RESUMO

PURPOSE: To investigate the performance, such as energy dependence and sensitivity, of thermoluminescent dosimeters (TLD), metal oxide semiconductor field-effect transistor dosimeters (MOSFET), and GafChromic™ films, and to validate the estimates of local dose deposition of a Monte Carlo (MC) simulation for breast dosimetry applications. METHODS: Experimental measurements were performed using a monoenergetic beam at the ELETTRA synchrotron radiation light source (Trieste, Italy). The three types of dosimeters were irradiated in a plane transversal to the beam axis and calibrated in terms of air kerma. The sensitivity of MOSFET dosimeters and GafChromic™ films was evaluated in the range of 18-28 keV. Three different calibration curves for the GafChromic™ films were tested (logarithmic, rational, and exponential functions) to evaluate the best-fit curve in the dose range of 1-20 mGy. Internal phantom dose measurements were performed at 20 keV for four different depths (range 0-3 cm, with 1 cm steps) using a homogeneous 50% glandular breast phantom. A GEANT4 MC simulation was modified to match the experimental setup. Thirty sensitive volumes, on the axial-phantom plane were included at each depth in the simulation to characterize the internal dose variation and compare it to the experimental TLD and MOSFET measurements. Experimental 2D dose maps were obtained with the GafChromic™ films and compared to the simulated 2D dose distributions estimated with the MC simulations. RESULTS: The sensitivity of the MOSFET dosimeters and GafChromic™ films increased with x-ray energy, by up to 37% and 48%, respectively. Dose-response curves for the GafChromic™ film result in an uncertainty lower than 5% above 6 mGy, when a logarithmic relationship is used in the dose range of 1-10 mGy. All experimental values fall within the experimental uncertainty and a good agreement (within 5%) is found against the MC simulation. The dose decreased with increasing phantom depth, with the reduction being ~80% after 3 cm. The uncertainty of the empirical measurements makes the experimental values compatible with a flat behavior across the phantom slab for all the investigated depths, while the MC points to a dose profile with a maximum toward the center of the phantom. CONCLUSIONS: The calibration procedures and the experimental methodologies proposed lead to good accuracy for internal breast dose estimation. In addition, these procedures can be successfully applied to validate MC codes for breast dosimetry at the local dose level. The agreement among the experimental and MC results not only shows the correctness of the empirical procedures used but also of the simulation parameters.


Assuntos
Mama/diagnóstico por imagem , Mamografia , Método de Monte Carlo , Doses de Radiação , Reprodutibilidade dos Testes , Raios X
10.
Oncotarget ; 8(12): 20179-20186, 2017 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-28423624

RESUMO

OBJECTIVE: To assess the breast dose during a routine thoracic cone-beam CT (CBCT) check with the efforts to explore the possible dose reduction strategy. MATERIALS AND METHODS: Metal oxide semiconductor field-effect transistor (MOSFET) dosimeters were used to measure breast surface doses during a thorax kV CBCT scan in an anthropomorphic phantom. Breast doses for different scanning protocols and breast sizes were compared. Dose reduction was attempted by using partial arc CBCT scan with bowtie filter. The impact of this dose reduction strategy on image registration accuracy was investigated. RESULTS: The average breast surface doses were 20.02 mGy and 11.65 mGy for thoracic CBCT without filtration and with filtration, respectively. This indicates a dose reduction of 41.8% by use of bowtie filter. It was found 220° partial arc scanning significantly reduced the dose to contralateral breast (44.4% lower than ipsilateral breast), while the image registration accuracy was not compromised. CONCLUSIONS: Breast dose reduction can be achieved by using ipsilateral 220° partial arc scan with bowtie filter. This strategy also provides sufficient image quality for thorax image registration in daily patient positioning verification.


Assuntos
Mama/diagnóstico por imagem , Tomografia Computadorizada de Feixe Cônico/métodos , Órgãos em Risco/efeitos da radiação , Imagens de Fantasmas , Dosímetros de Radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/radioterapia , Feminino , Humanos , Radiografia Torácica , Dosagem Radioterapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA