Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Ann Work Expo Health ; 68(5): 495-509, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38563681

RESUMO

BACKGROUND AND OBJECTIVES: This paper describes an evaluation and analysis of an updated version of ECEL v3.0-an integrated risk management measure (RMM) library developed as part of a CEFIC LRI initiative. The occupational module contains extensive data on the quantitative effectiveness of RMMs to control inhalation and dermal exposure in the workplace. The objective was to investigate the effectiveness and variability in effectiveness of RMM and to explore the difference between optimal and non-optimal RMM applications in the workplace. METHODS: A new database structure and interface were developed and the content of the database was updated with a systematic literature review and integration with other databases (totalling 3373 records from 548 studies). To analyse the data, Bayesian linear mixed models were constructed with the study as a random effect and various study characteristics and RMM categories as fixed effects individually in separate models. A multivariate mixed model was used on a stratified dataset to test (amongst others) the conditions of RMM use. RESULTS: Analyses of the data indicated effectiveness values for each RMM category (for example ~87% for technical emission controls compared with ~60% for technical dispersion controls). Substantial variability in effectiveness was observed within and between different types of RMM. Seven study characteristics (covariables) were included in the analyses, which indicated a pronounced difference in as-built (optimal/experimental) and as-used (workplace) conditions of RMM use (93.3% and 74.6%, respectively). CONCLUSIONS: This library provides a reliable evidence base to derive base estimates of RMM effectiveness-beneficial for both registrant and downstream users. It stresses the importance of optimal use of RMMs in the workplace (technical design/functioning, use, and maintenance). Various challenges are foreseen to further update ECEL to improve guidance, for deriving improved estimates and ensure user-friendliness of the library.


Assuntos
Exposição Ocupacional , Gestão de Riscos , Local de Trabalho , Humanos , Exposição Ocupacional/prevenção & controle , Gestão de Riscos/métodos , Teorema de Bayes , Exposição por Inalação/análise , Bases de Dados Factuais
2.
J Pharm Sci ; 109(1): 830-844, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31647951

RESUMO

One of the major product quality challenges for injectable biologics is controlling the amount of protein aggregates and particles present in the final drug product. This article focuses on particles in the submicron range (<2 µm). A cross-industry collaboration was undertaken to address some of the analytical gaps in measuring submicron particles (SMPs), developing best practices, and surveying the concentration of these particles present in 52 unique clinical and commercial protein therapeutics covering 62 dosage forms. Measured particle concentrations spanned a range of 4 orders of magnitude for nanoparticle tracking analysis and 3 orders of magnitude for resonant mass measurement. The particle concentrations determined by the 2 techniques differed significantly for both control and actual product. In addition, results suggest that these techniques exhibit higher variability compared to well-established subvisible particle characterization techniques (e.g., flow-imaging or light obscuration). Therefore, in their current states, nanoparticle tracking analysis and resonant mass measurement-based techniques can be used during product and process characterization, contributing information on the nature and propensity for formation of submicron particles and what is normal for the product, but may not be suitable for release or quality control testing. Evaluating the level of SMPs to which humans have been routinely exposed during the administration of several commercial and late-phase clinical products adds critical knowledge to our understanding of SMP levels that may be considered acceptable from a safety point of view. This article also discusses dependence of submicron particle size and concentration on the dosage form attributes such as physical state, primary packaging, dose strength, etc. To the best of our knowledge, this is the largest study ever conducted to characterize SMPs in late-phase and commercial products.


Assuntos
Nanotecnologia , Proteínas/química , Tecnologia Farmacêutica , Formas de Dosagem , Composição de Medicamentos , Estabilidade de Medicamentos , Europa (Continente) , Humanos , Nanopartículas , Tamanho da Partícula , Agregados Proteicos , Estabilidade Proteica , Reprodutibilidade dos Testes , Estados Unidos
3.
Cytotherapy ; 19(12): 1529-1536, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29066052

RESUMO

BACKGROUND AIMS: Cell therapy products (CTP) typically require full sterility, endotoxin and Mycoplasma testing before product release. Often this is not feasible with fresh cells, and sponsors may rely on rapid microbiological methods (RMM). RMM must be qualified in-house using the sponsor's facilities, equipment, consumables, cells and matrices to meet regulatory approval. Herein, we present a cost-effective strategy to conduct an in-house abbreviated qualification of a commercially available RMM kit to meet Health Canada regulatory requirements. METHODS: We performed an abbreviated qualification using a polymerase chain reaction (PCR)-based Mycoplasma testing method involving assay sensitivity and ruggedness, based on an experimental plan that was pre-approved by Health Canada. Briefly, investigational CTPs were tested in-house using a PCR-based Mycoplasma detection kit. Assay sensitivity was determined using a 10-fold dilution series of genomic DNA of only two Mycoplasma species, Mycoplasma arginini and Mycoplasma hominis in the absence of CTP-matrix as the kit had been previously validated against nine species. Matrix interference was measured by testing independent CTP samples. Testing by different operators on different days measured ruggedness. RESULTS: The RMM Mycoplasma qualification exceeded sensitivity (4 genome copies per reaction for M. arginini and 0.12 genome copies per reaction for M. hominis) and met ruggedness requirements without matrix interference, as required by the Pharmacopoeial guidelines (Ph. Eur. 2.6.7 and USP <1223>). DISCUSSION: Our approach represents a minimal qualification that can be performed by an academic institution while ensuring regulatory compliance for implementing RMM testing for in-process and product-release testing of CTPs.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/normas , Células-Tronco Mesenquimais/microbiologia , Técnicas Microbiológicas/métodos , Mycoplasma/genética , Reação em Cadeia da Polimerase/métodos , Canadá , Humanos , Legislação Médica , Limite de Detecção , Reação em Cadeia da Polimerase/economia , Sensibilidade e Especificidade
4.
PDA J Pharm Sci Technol ; 69(2): 264-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25868992

RESUMO

UNLABELLED: In-process tests are used between manufacturing steps to avoid the cost of further processing material that is apt to fail its final tests. Rapid microbiological methods that return simple negative or positive results are attractive in this context because they are faster than the compendial methods used at product release. However, using a single such test will not reliably detect barely unacceptable material (sensitivity) without generating an undesirable number of false rejections (poor specificity). We quantify how to achieve a balance between the risks of false acceptance and false rejection by performing multiple rapid microbiological methods and applying an acceptance rule. We show how the end user can use a simple (and novel) graph to choose a sample size, the number of samples, and an acceptance rule that yield a good balance between the two risks while taking cost (number of tests) into account. LAY ABSTRACT: In-process tests are used between manufacturing steps to avoid the cost of further processing material that is apt to fail its final tests. Rapid microbiological methods that return simple negative or positive results are attractive in this context because they are faster than the compendial methods used at product release. However, using a single such test will not reliably detect barely unacceptable material (sensitivity) without generating an undesirable number of false rejections (poor specificity). We quantify how to achieve a balance between the risks of false acceptance and false rejection by performing multiple rapid microbiological methods and applying an acceptance rule. We show how the end user can use a simple (and novel) graph to choose a sample size, the number of samples, and an acceptance rule that yield a good balance between the two risks while taking cost (number of tests) into account.


Assuntos
Contaminação de Medicamentos/prevenção & controle , Técnicas Microbiológicas/métodos , Modelos Estatísticos , Preparações Farmacêuticas/análise , Contagem de Colônia Microbiana , Indústria Farmacêutica , Preparações Farmacêuticas/normas , Reprodutibilidade dos Testes , Tamanho da Amostra , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA