Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Data Brief ; 54: 110459, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38774246

RESUMO

This article introduces an openly accessible dataset aimed at supporting energy system modelling of decarbonisation pathways in the Philippines. The dataset was compiled through an extensive literature review, incorporating information from various sources such as the Philippines Department of Energy, academic publications, and international organisations. To ensure compatibility with OSeMOSYS modelling requirements, the data underwent processing and standardisation. It includes power plant data covering existing capacity from classified by grid, off-grid, and planned additions, as well as historical generation data. Additionally, the dataset provides historical and projected electricity demand from 2015 to 2050 segmented by sectors. It also offers technical potential estimates for fossil fuels and renewable energy sources, along with key techno-economic parameters for emerging technologies like floating solar PV, in-stream tidal, and offshore wind. The dataset is freely available on Zenodo, empowering researchers, policymakers, and private-sector actors to conduct independent energy modelling and analyses aligned with the U4RIA framework principles. Its open access encourages collaboration and facilitates informed decision-making to advance a sustainable energy future not only for the Philippines but also for broader global contexts.

2.
J Hazard Mater ; 472: 134394, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38703690

RESUMO

The use of plastics has become deeply ingrained in our society, and there are no indications that its prevalence will decrease in the foreseeable future. This article provides a comprehensive overview of the global plastic waste disposal landscape, examining it through regional perspectives, various management technologies (dumping or landfilling, incineration, and reuse and recycling), and across different sectors including agriculture and food, textile, tourism, and healthcare. Notably, this study compiles the findings on life-cycle carbon footprints associated with various plastic waste management practices as documented in the literature. Employing the bio-circular-green economy model, we advocate for the adoption of streamlined and sustainable approaches to plastic management. Unique management measures are also discussed including the utilization of bioplastics combined with smart and efficient collection processes that facilitate recycling, industrial composting, or anaerobic digestion. Moreover, the integration of advanced recycling methods for conventional plastics with renewable energy, the establishment of plastic tax and credits, and the establishment of extended producer responsibility are reviewed. The success of these initiatives relies on collaboration and support from peers, industries, and consumers, ultimately contributing to informed decision-making and fostering sustainable practices in plastic waste management.


Assuntos
Plásticos , Reciclagem , Gerenciamento de Resíduos , Gerenciamento de Resíduos/métodos , Gerenciamento de Resíduos/economia , Eliminação de Resíduos/métodos , Eliminação de Resíduos/economia , Pegada de Carbono , Carbono/química
3.
J Environ Manage ; 360: 121127, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38749133

RESUMO

The decarbonization of the energy sector has been a subject of research and of political discussions for several decades, gaining significant attention in the last years. It is commonly acknowledged that the most obvious way to achieve decarbonization is the use of renewable energy sources. Within the context of the energy sector decarbonization, many mainly industrialized countries recently started developing national plans to establish a hydrogen-based economy in the very near future. The plans for green hydrogen initially try to (a) target sectors that are difficult to decarbonize and (b) address issues related to the storage and transportation of CO2-free energy. To achieve almost complete decarbonization, electric power must be generated exclusively from renewable sources. In so-called Power-to-X (PtX) technologies, green hydrogen is generated from electricity and subsequently converted to another energy carrier which can be further stored, transported and used. In PtX, X stands, for example, for liquid hydrogen, methanol or ammonia. The challenges associated with decarbonization include those associated with (a) the expansion of renewable energies (e.g., high capital demand, political and social issues), (b) the production, transportation, and storage of hydrogen and the energy carriers denoted by X in PtX (e.g., high cost and low overall efficiency), and (c) the expected significant increase in the demand for electrical energy. The paper discusses whether and under which conditions the current national and international hydrogen plans of many industrialized countries could lead to a maximization of decarbonization in the world. It concludes that, in general, as long as the conditions for generating large excess amounts of green electricity are not met, the quick establishment of a hydrogen economy could not only be very expensive, but also counterproductive to the worldwide decarbonization efforts.


Assuntos
Eletricidade , Hidrogênio , Energia Renovável , Dióxido de Carbono
4.
J Environ Manage ; 359: 120848, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38696850

RESUMO

This study investigates the least-cost decarbonization pathways in the Finnish electricity generation industry in order to achieve the national carbon neutrality goal by 2035. Various abatement measures, such as downscaling production, capital investment, and increasing labor and intermediate inputs, are considered. The marginal abatement costs (MACs) of greenhouse gas emissions are estimated using the convex quantile regression method and applied to unique register-based firm-level greenhouse gas emission data merged with financial statement data. We adjust the MAC estimates for the sample selection bias caused by zero-emission firms by applying the two-stage Heckman correction. Our empirical findings reveal that the median MAC ranges from 0.1 to 3.5 euros per tonne of CO2 equivalent. The projected economic cost of a 90% reduction in emissions is 62 million euros, while the estimated cost of achieving zero emissions is 83 million euros.


Assuntos
Eletricidade , Finlândia , Gases de Efeito Estufa/análise , Dióxido de Carbono/análise
5.
Sci Total Environ ; 927: 171983, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38575017

RESUMO

The objective of this study is twofold. First, it aims to bridge a significant gap in the existing literature by reviewing the integration of waste heat recovery (WHR) into polygeneration systems. Thus, it scrutinizes the methods and challenges of WHR-based polygeneration systems and explores their energy and economic potential based on data gathered from the literature and using key indicators. Second, it addresses the scarcity of existing studies assessing the environmental impact of these systems. Therefore, an environmental analysis is conducted to evaluate the potential mitigation of greenhouse gas emissions achievable through their implementation. The findings of the study reveal significant energy and exergy efficiencies, varying in the ranges of 20.8 %-96.9 % and 24.1 %-63.6 %, respectively, proving high performance of WHR-based polygeneration systems. Economically, these systems exhibit competitiveness, with short payback periods ranging from 1.4 to 6.7 years, along with average levelized costs of electricity, cooling, and heating of 0.17, 0.37 and 0.13 $/kWh, sequentially. Moreover, the environmental assessment confirmed substantial reductions in greenhouse gas emissions, reaching on average 2.45 kt of carbon dioxide per MW of installed capacity, annually. The study could contribute to raising awareness regarding the energy, economic, and environmental benefits of WHR-based polygeneration systems, thereby fostering the widespread adoption of these sustainable systems.

6.
J Environ Manage ; 356: 120683, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38522278

RESUMO

The study introduces a hybrid model that integrates system dynamics modeling and multi-criteria analysis. Through the system dynamics model, the study examines energy, economic, and environmental indicators of a District Heating (DH) company, assessing its dynamics until 2050. Various decarbonization scenarios are explored, involving the transition of the DH system to a 4th generation DH (4GDH) system based on four strategies: utilizing at least (a) 50% Renewable Energy Sources (RES), (b) 50% waste heat, (c) 75% cogenerated heat, or (d) 50% of the combined aforementioned energy and heat. Additionally, development scenarios incorporate measures to enhance energy efficiency on the consumer side and within the heating networks. The sustainability of each scenario is evaluated using the multi-criteria analysis method TOPSIS. The hybrid model establishes a ranking of the transition pathways based on their sustainability scores and benchmarks the results of the developed scenarios against a carbon-neutral DH system. This model serves as a valuable guide for DH system developers and decision-makers. The study focuses on Riga as a practical case study.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38429594

RESUMO

The transition to sustainable energy is crucial for mitigating climate change impacts. This study addresses this imperative by simulating a green hydrogen supply chain tailored for residential cooking in Oman. The supply chain encompasses solar energy production, underground storage, pipeline transportation, and residential application, aiming to curtail greenhouse gas emissions and reduce the levelized cost of hydrogen (LCOH). The simulation results suggest leveraging a robust 7 GW solar plant. Oman achieves an impressive annual production of 9.78 TWh of green hydrogen, equivalent to 147,808 tonnes of H2, perfectly aligning with the ambitious goals of Oman Vision 2040. The overall LCOH for the green hydrogen supply chain is estimated at a highly competitive 6.826 USD/kg, demonstrating cost competitiveness when benchmarked against analogous studies. A sensitivity analysis highlights Oman's potential for cost-effective investments in green hydrogen infrastructure, propelling the nation towards a sustainable energy future. This study not only addresses the pressing issue of reducing carbon emissions in the residential sector but also serves as a model for other regions pursuing sustainable energy transitions. The developed simulation models are publicly accessible at https://hychain.co.uk , providing a valuable resource for further research and development in the field of green hydrogen supply chains.

8.
Environ Sci Technol ; 58(11): 4957-4967, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38446013

RESUMO

Electrification and clean hydrogen are promising low-carbon options for decarbonizing industrial process heat, which is an essential target for reducing sector-wide emissions. However, industrial processes with heat demand vary significantly across industries in terms of temperature requirements, capacities, and equipment, making it challenging to determine applications for low-carbon technologies that are technically and economically feasible. In this analysis, we develop a framework for evaluating life cycle emissions, water use, and cost impacts of electric and clean hydrogen process heat technologies and apply it in several case studies for plastics and petrochemical manufacturing industries in the United States. Our results show that industrial heat pumps could reduce emissions by 12-17% in a typical poly(vinyl chloride) (PVC) facility in certain locations currently, compared to conventional natural gas combustion, and that other electric technologies in PVC and ethylene production could reduce emissions by nearly 90% with a sufficiently decarbonized electric grid. Life cycle water use increases significantly in all low-carbon technology cases. The levelized cost of heat of viable low-carbon technologies ranges from 15 to 100% higher than conventional heating systems, primarily due to energy costs. We discuss results in the context of relevant policies that could be useful to manufacturing facilities and policymakers for aiding the transition to low-carbon process heat technologies.


Assuntos
Cloreto de Vinil , Estados Unidos , Temperatura Alta , Carbono , Instalações Industriais e de Manufatura , Etilenos , Hidrogênio , Água
9.
Bioresour Technol ; 397: 130493, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38403171

RESUMO

Energy-efficient wastewater treatment units are imperative to achieve carbon neutrality and a circular economy at the industrial scale. In the present study, pyrochar loading and digestion temperature were tested to assess their impact on the performance of an anaerobic digester running on distillery wastewater. The digestion temperature (37 °C and 55 °C) and pyrochar loading (7.5 - 30 g/L.feed) were selected as two primary design factors. Experiments were designed using Taguchi's design of experiments and specific methane yield, total ammonia nitrogen, pH and buffering capacity were selected as experimental outputs for multi-criteria assessment. The results from the confirmation test indicated that the addition of pyrochar (7.5 g/Lfeed) improved the methane yield (276 ± 15 L/kg VS) significantly compared to the control (167 ± 15 L/kg VS) at 37 °C. The detailed post-digestion analysis showed that the adsorption of ammonia on pyrochar may be the primary reason for enhanced digester performance.


Assuntos
Amônia , Águas Residuárias , Anaerobiose , Temperatura , Metano , Reatores Biológicos
10.
Data Brief ; 52: 110012, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38235184

RESUMO

The land transport sector, impacting fossil fuel consumption, has been selected as one of the sectors to apply decarbonization strategies. Energy systems modelling is an applied tool to evaluate scenarios and strategies that can be implemented in the transport sector to achieve energy transitions. These energy modelling tools need a dataset that allows the simulation of alternative scenarios of the systems. For this purpose, a collection and processing of technical-economic data is needed to ensure a quality input for simulation tools. This article presents a set of open data to create a model of the energy system of the Dominican Republic to assess alternative scenarios and develop strategies to achieve the energy transition in the land transport sector. This exercise is performed to support the energy planning policies of the country. Although the dataset is presented for the conditions of the Dominican Republic, the insight regarding data gathering and processing can be applied to other island countries. The data obtained are an open-access database of energy regulators, generation agents, and representatives of the generation, transmission, and distribution sector, as well as websites, databases of international organizations, scientific journals, and standards. Therefore, the data presented can be updated as the technical-economic information becomes public.

11.
Environ Sci Technol ; 57(49): 20571-20582, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38016278

RESUMO

The chemical industry is a major and growing source of CO2 emissions. Here, we extend the principal U.S.-based integrated assessment model, GCAM, to include a representation of steam cracking, the dominant process in the organic chemical industry today, and a suite of emerging decarbonization strategies, including catalytic cracking, lower-carbon process heat, and feedstock switching. We find that emerging catalytic production technologies only have a small impact on midcentury emissions mitigation. In contrast, process heat generation could achieve strong mitigation, reducing associated CO2 emissions by ∼76% by 2050. Process heat generation is diversified to include carbon capture and storage (CCS), hydrogen, and electrification. A sensitivity analysis reveals that our results for future net CO2 emissions are most sensitive to the amount of CCS deployed globally. The system as defined cannot reach net-zero emissions if the share of incineration increases as projected without coupling incineration with CCS. Less organic chemicals are produced in a net-zero CO2 future than those in a no-policy scenario. Mitigation of feedstock emissions relies heavily on biogenic carbon used as an alternative feedstock and waste treatment of plastics. The only scenario that delivers net-negative CO2 emissions from the organic chemical sector (by 2070) combines greater use of biogenic feedstocks with a continued reliance on landfilling of waste plastic, versus recycling or incineration, which has trade-offs.


Assuntos
Dióxido de Carbono , Incineração , Dióxido de Carbono/análise , Incineração/métodos , Indústrias , Compostos Orgânicos , Carbono , Plásticos
12.
Artigo em Inglês | MEDLINE | ID: mdl-37807029

RESUMO

The hydrogen industry has garnered substantial attention as a pivotal solution in addressing the intricate challenges of energy transition and achieving decarbonization across diverse sectors. The efficacy of deploying hydrogen technologies hinges upon the availability of robust financing mechanisms that can adequately support the dynamic demands and intricate supply chain intricacies inherent in the hydrogen sector. This comprehensive study is underpinned by a rigorous and systematic review of prior research on the hydrogen economy, leveraging authoritative databases including Web of Science, Scopus, and a range of consultancy-based reports. The study meticulously assesses the escalating interest in hydrogen as a paramount clean energy alternative, emphasizing its significance in propelling the multifaceted development and expansion of hydrogen supply chain dynamics. Furthermore, this research critically scrutinizes the intricate financial facets of the hydrogen sector, with a specific focus on delineating the drivers of demand and unraveling the complexities interwoven within the supply chain. Building upon this analysis, the study offers a forward-looking perspective on hydrogen financing, which considers emerging technologies, evolving policy landscapes, and dynamic market trends. In the face of existing global constraints within the hydrogen supply chain, innovative financing mechanisms such as green bonds, project financing underwritten by risk guarantees through public-private partnership paradigms, venture capital-equity models, and carbon pricing mechanisms emerge as indispensable tools poised to address these challenges effectively.

13.
Environ Sci Technol ; 57(29): 10615-10628, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37432042

RESUMO

Global pathways limiting warming to 2 °C or below require deep carbon dioxide removal through a large-scale transformation of the land surface, an increase in forest cover, and the deployment of negative emission technologies (NETs). Government initiatives endorse bioenergy as an alternative, carbon-neutral energy source for fossil fuels. However, this carbon neutral assumption is increasingly being questioned, with several studies indicating that it may result in accounting errors and biased decision-making. To address this growing issue, we use a carbon budget model combined with an energy system model. We show that including forest sequestration in the energy system model alleviates the decarbonization effort. We discuss how a forest management strategy with a high sequestration capacity reduces the need for expensive negative emission technologies. This study indicates the necessity of establishing the most promising forest management strategy before investing in bioenergy with carbon capture and storage. Finally, we describe how a carbon neutrality assumption may lead to biased decision-making because it allows the model to use more biomass without being constrained by biogenic CO2 emissions. The risk of biased decision-making is higher for regions that have lower forest coverage, since available forest sequestration cannot sink biogenic emissions in the short term, and importing bioenergy could worsen the situation.


Assuntos
Dióxido de Carbono , Florestas , Biomassa , Dióxido de Carbono/análise , Combustíveis Fósseis , Sequestro de Carbono
14.
J Environ Manage ; 345: 118593, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37442041

RESUMO

Recycling and disposing wastewater from the pharmaceutical industry are of utmost importance in mitigating chemical waste generation, where unmanaged hazardous waste fluxes could cause massive environmental damage. Air stripping, steam stripping, distillation, and incineration offer significant emission reduction potentials for pharmaceutical applications; however, selecting specific process units is a complicated task due to the high number of influencing screening criteria. The mentioned chemical processes are modelled with the Aspen Plus program. This study examines the environmental impacts of adsorbable organic halogens (AOX) containing pharmaceutical process wastewater disposal by conducting life cycle impact assessments using the Product Environmental Footprint (PEF), IMPACT World + Endpoint V1.01, and Recipe 2016 Endpoint (H) V1.06 methods. The results show that the distillation-based separation of AOX compounds is characterized by the most favourable climate change impact and outranks the PEF single score of air stripping, steam stripping, and incineration by 6.3%, 29.1%, 52.0%, respectively. The energy-intensive distillation technology is further evaluated by considering a wide selection of energy sources (i.e., fossil fuel, nuclear, solar, wind onshore, and wind offshore) using PESTLE (Political, Economic, Social, Technological, Legal, Environmental) analysis combined with multi-criteria decision support to determine the most beneficial AOX disposal scenario. The best overall AOX regeneration performance and lowest climate change impact (7.25 × 10-3 kg CO2-eq (1 kg purified wastewater)-1) are obtained by supplying variable renewable electricity from onshore wind turbines, reaching 64.87% carbon emission reduction compared to the baseline fossil fuel-based process alternative.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Vapor , Compostos Orgânicos , Halogênios , Técnicas de Apoio para a Decisão , Preparações Farmacêuticas
15.
Environ Sci Technol ; 57(31): 11541-11551, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37499260

RESUMO

Techno-economic analyses (TEAs) and life cycle assessments (LCAs) of algal biofuels often focus on locations in suboptimal latitudes for algal cultivation, which can under-represent the sustainability potential of the technology. This study identifies the optimal global productivity potential, environmental impacts, and economic viability of algal biofuels by using validated biophysical and sustainability modeling. The biophysical model simulates growth rates of Scenedesmus obliquusbased on temperature, photoinhibition, and respiration effects at 6685 global locations. Region-specific labor costs, construction factors, and tax rates allow for spatially resolved TEA, while the LCA includes regional impacts of electricity, hydrogen, and nutrient markets across ten environmental categories. The analysis identifies optimal locations for algal biofuel production in terms of environmental impacts and economic viability which are shown to follow biomass yields. Modeling results highlight the global variability of productivity with maximum yields ranging between 24.8 and 27.5 g m-2 d-1 in equatorial regions. Environmental impact results show favorable locations tracked with low-carbon electricity grids, with the well-to-wheels global warming potential (GWP) ranging from 31 to 45 g CO2eq MJ-1 in South America and Central Africa. When including direct land use change impacts, the GWP ranged between 44 and 55 g CO2eq MJ-1 in these high-productivity regions. Low-carbon electricity also favors air quality and eutrophication impacts. The TEA shows that minimum algal fuel prices of $1.89-$2.15 per liter of gasoline-equivalent are possible in southeast Asia and Venezuela. This discussion focuses on the challenges and opportunities to reduce fuel prices and the environmental impacts of algal biofuels in various global regions.


Assuntos
Biocombustíveis , Plantas , Animais , Gasolina , Carbono , Estágios do Ciclo de Vida , Biomassa
16.
J Environ Manage ; 345: 118567, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37454571

RESUMO

During the COVID-19 period, industrial production was slowed or halted due to COVID restrictions and lockdowns, followed by global tensions and conflicts, which created uncertainties for industrial production. Similarly, during this period, the growth in carbon emissions was seen shrinking. However, it is greatly important to explore whether this shrinking trend will continue or whether a new growth pattern could emerge. Considering this, the research was carried out to investigate the relationship between green innovation initiatives and environmental regulations in the process of environmental management and environmental performance in the industrial sector. To do so, the survey-based research methodology using PLS-SEM was adopted, and data was gathered from 279 managers working in the equipment manufacturing industry. Our empirical findings revealed that environmental regulation and green innovation efforts strengthen decarbonization efforts, which further improve environmental management and environmental performance. The mediating role of decarbonization efforts was found to be prominent among green process innovation, environmental management and environmental performance. Moreover, decarbonization serves as a mediator between green product innovation and environmental management. In contrast, we could not verify that decarbonization mediates the relationship between green product innovation and environmental performance. The key findings are greatly important and provide a fresh roadmap for environmental management in the post-COVID era.


Assuntos
COVID-19 , Humanos , COVID-19/prevenção & controle , Controle de Doenças Transmissíveis , Conservação dos Recursos Naturais , Indústrias , Indústria Manufatureira , China , Desenvolvimento Econômico
17.
Entropy (Basel) ; 25(7)2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37510045

RESUMO

The need to reduce the dependency of chemicals on fossil fuels has recently motivated the adoption of renewable energies in those sectors. In addition, due to a growing population, the treatment and disposition of residual biomass from agricultural processes, such as sugar cane and orange bagasse, or even from human waste, such as sewage sludge, will be a challenge for the next generation. These residual biomasses can be an attractive alternative for the production of environmentally friendly fuels and make the economy more circular and efficient. However, these raw materials have been hitherto widely used as fuel for boilers or disposed of in sanitary landfills, losing their capacity to generate other by-products in addition to contributing to the emissions of gases that promote global warming. For this reason, this work analyzes and optimizes the biomass-based routes of biochemical production (namely, hydrogen and ammonia) using the gasification of residual biomasses. Moreover, the capture of biogenic CO2 aims to reduce the environmental burden, leading to negative emissions in the overall energy system. In this context, the chemical plants were designed, modeled, and simulated using Aspen plus™ software. The energy integration and optimization were performed using the OSMOSE Lua Platform. The exergy destruction, exergy efficiency, and general balance of the CO2 emissions were evaluated. As a result, the irreversibility generated by the gasification unit has a relevant influence on the exergy efficiency of the entire plant. On the other hand, an overall negative emission balance of -5.95 kgCO2/kgH2 in the hydrogen production route and -1.615 kgCO2/kgNH3 in the ammonia production route can be achieved, thus removing from the atmosphere 0.901 tCO2/tbiomass and 1.096 tCO2/tbiomass, respectively.

18.
Sci Total Environ ; 892: 164653, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37295524

RESUMO

Addressing global climate change requires countries to achieve economic decarbonization. However, there is currently no appropriate indicator to measure a country's economic decarbonization. In this study, we define a "decarbonization value-added (DEVA)" indicator of environmental cost internalization, construct a DEVA accounting framework that takes into account trade and investment activities, and provide a Chinese story of "decarbonization without borders". The results show that pure domestic production activities involving production linkages between pure domestic-owned enterprises (DOEs) are the main source of DEVA in China, and therefore production linkages between DOEs should be strengthened. Although trade-related DEVA is higher than that of related to foreign direct investment (FDI) DEVA, the impact of FDI-related production activities on China's economic decarbonization is increasing. This impact is mainly reflected in high-tech manufacturing and trade and transportation industries. Further, we divided four FDI-related production modes. It is found that the upstream production mode of DOEs (i.e. "DOEs-DOEs" type, "DOEs-foreign-invested enterprises" type) leads to the main position of DEVA in China's FDI-related DEVA, and the overall trend is increasing. These findings help us better understand the impact of trade and investment activities on a country's economic and environmental sustainability, and thus provide an important reference for a country to formulate sustainable development policies centered on economic decarbonization.


Assuntos
Dióxido de Carbono , Desenvolvimento Econômico , Dióxido de Carbono/análise , Investimentos em Saúde , China , Internacionalidade
19.
Environ Sci Technol ; 57(16): 6373-6386, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37066969

RESUMO

The manufacturing sector accounts for a large percentage of global energy use and greenhouse gas emissions, and there is growing interest in the potential of additive manufacturing (AM) to reduce the sector's environmental impacts. Across multiple industries, AM has been used to reduce material use in final parts by 35-80%, and recent publications have predicted that AM will enable the fabrication of customized products locally and on-demand, reducing shipping and material waste. In many contexts, however, AM is not a viable alternative to traditional manufacturing methods due to its high production costs. And in high-volume mass production, AM can lead to increased energy use and material waste, worsening environmental impacts compared to traditional production methods. Whether AM is an environmentally and economically preferred alternative to traditional manufacturing depends on several hidden aspects of AM that are not readily apparent when comparing final products, including energy-intensive and expensive material feedstocks, excessive material waste during production, high machine costs, and slow rates of production. We systematically review comparative studies of the environmental impacts and costs of AM in contrast with traditional manufacturing methods and identify the conditions under which AM is the environmentally and economically preferred alternative. We find that AM has lower production costs and environmental impacts when production volumes are relatively low (below ∼1,000 per year for environmental impacts and below 42-87,000 per year for costs, depending on the AM process and part geometry) or the parts are small and would have high material waste if traditionally manufactured. In cases when the geometric freedom of AM enables performance improvements that reduce environmental impacts and costs during a product's use phase, these can counteract the higher production impacts of AM, making it the preferred alternative at larger production volumes. AM's ability to be environmentally and economically beneficial for mass manufacturing in a wider variety of contexts is dependent on reducing the cost and energy intensity of material feedstock production, eliminating the need for support structures, raising production speeds, and reducing per unit machine costs. These challenges are not primarily caused by economies of scale, and therefore, they are not likely to be addressed by the increasing expansion of the AM sector. Instead, they will require fundamental advances in material science, AM production technologies, and computer-aided design software.


Assuntos
Gases de Efeito Estufa , Tecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA