RESUMO
In a standard binary supervised classification task, the existence of both negative and positive samples in the training dataset are required to construct a classification model. However, this condition is not met in certain applications where only one class of samples is obtainable. To overcome this problem, a different classification method, which learns from positive and unlabeled (PU) data, must be incorporated. In this study, a novel method is presented: neighborhood-based positive unlabeled learning using decision tree (NPULUD). First, NPULUD uses the nearest neighborhood approach for the PU strategy and then employs a decision tree algorithm for the classification task by utilizing the entropy measure. Entropy played a pivotal role in assessing the level of uncertainty in the training dataset, as a decision tree was developed with the purpose of classification. Through experiments, we validated our method over 24 real-world datasets. The proposed method attained an average accuracy of 87.24%, while the traditional supervised learning approach obtained an average accuracy of 83.99% on the datasets. Additionally, it is also demonstrated that our method obtained a statistically notable enhancement (7.74%), with respect to state-of-the-art peers, on average.
RESUMO
Automated segmentation is a challenging task in medical image analysis that usually requires a large amount of manually labeled data. However, most current supervised learning based algorithms suffer from insufficient manual annotations, posing a significant difficulty for accurate and robust segmentation. In addition, most current semi-supervised methods lack explicit representations of geometric structure and semantic information, restricting segmentation accuracy. In this work, we propose a hybrid framework to learn polygon vertices, region masks, and their boundaries in a weakly/semi-supervised manner that significantly advances geometric and semantic representations. Firstly, we propose multi-granularity learning of explicit geometric structure constraints via polygon vertices (PolyV) and pixel-wise region (PixelR) segmentation masks in a semi-supervised manner. Secondly, we propose eliminating boundary ambiguity by using an explicit contrastive objective to learn a discriminative feature space of boundary contours at the pixel level with limited annotations. Thirdly, we exploit the task-specific clinical domain knowledge to differentiate the clinical function assessment end-to-end. The ground truth of clinical function assessment, on the other hand, can serve as auxiliary weak supervision for PolyV and PixelR learning. We evaluate the proposed framework on two tasks, including optic disc (OD) and cup (OC) segmentation along with vertical cup-to-disc ratio (vCDR) estimation in fundus images; left ventricle (LV) segmentation at end-diastolic and end-systolic frames along with ejection fraction (LVEF) estimation in two-dimensional echocardiography images. Experiments on nine large-scale datasets of the two tasks under different label settings demonstrate our model's superior performance on segmentation and clinical function assessment.
Assuntos
Algoritmos , Humanos , Interpretação de Imagem Assistida por Computador/métodos , EcocardiografiaRESUMO
BACKGROUND: Neoadjuvant therapy followed by surgery has become the standard of care for locally advanced esophageal squamous cell carcinoma (ESCC) and accurate pathological response assessment is critical to assess the therapeutic efficacy. However, it can be laborious and inconsistency between different observers may occur. Hence, we aim to develop an interpretable deep-learning model for efficient pathological response assessment following neoadjuvant therapy in ESCC. METHODS: This retrospective study analyzed 337 ESCC resection specimens from 2020-2021 at the Pudong-Branch (Cohort 1) and 114 from 2021-2022 at the Puxi-Branch (External Cohort 2) of Fudan University Shanghai Cancer Center. Whole slide images (WSIs) from these two cohorts were generated using different scanning machines to test the ability of the model in handling color variations. Four pathologists independently assessed the pathological response. The senior pathologists annotated tumor beds and residual tumor percentages on WSIs to determine consensus labels. Furthermore, 1850 image patches were randomly extracted from Cohort 1 WSIs and binarily classified for tumor viability. A deep-learning model employing knowledge distillation was developed to automatically classify positive patches for each WSI and estimate the viable residual tumor percentages. Spatial heatmaps were output for model explanations and visualizations. RESULTS: The approach achieved high concordance with pathologist consensus, with an R^2 of 0.8437, a RAcc_0.1 of 0.7586, a RAcc_0.3 of 0.9885, which were comparable to two senior pathologists (R^2 of 0.9202/0.9619, RAcc_0.1 of 8506/0.9425, RAcc_0.3 of 1.000/1.000) and surpassing two junior pathologists (R^2 of 0.5592/0.5474, RAcc_0.1 of 0.5287/0.5287, RAcc_0.3 of 0.9080/0.9310). Visualizations enabled the localization of residual viable tumor to augment microscopic assessment. CONCLUSION: This work illustrates deep learning's potential for assisting pathological response assessment. Spatial heatmaps and patch examples provide intuitive explanations of model predictions, engendering clinical trust and adoption (Code and data will be available at https://github.com/WinnieLaugh/ESCC_Percentage once the paper has been conditionally accepted). Integrating interpretable computational pathology could help enhance the efficiency and consistency of tumor response assessment and empower precise oncology treatment decisions.
RESUMO
Forest fires threaten global ecosystems, socio-economic structures, and public safety. Accurately assessing forest fire susceptibility is critical for effective environmental management. Supervised learning methods dominate this assessment, relying on a substantial dataset of forest fire occurrences for model training. However, obtaining precise forest fire location data remains challenging. To address this issue, semi-supervised learning emerges as a viable solution, leveraging both a limited set of collected samples and unlabeled data containing environmental factors for training. Our study employed the transductive support vector machine (TSVM), a key semi-supervised learning method, to assess forest fire susceptibility in scenarios with limited samples. We conducted a comparative analysis, evaluating its performance against widely used supervised learning methods. The assessment area for forest fire susceptibility lies in Dayu County, Jiangxi Province, China, renowned for its vast forest cover and frequent fire incidents. We analyzed and generated maps depicting forest fire susceptibility, evaluating prediction accuracies for both supervised and semi-supervised learning methods across various small sample scenarios (e.g., 4, 8, 12, 16, 20, 24, 28, and 32 samples). Our findings indicate that TSVM exhibits superior prediction accuracy compared to supervised learning with limited samples, yielding more plausible forest fire susceptibility maps. For instance, at sample sizes of 4, 16, and 28, TSVM achieves prediction accuracies of approximately 0.8037, 0.9257, and 0.9583, respectively. In contrast, random forests, the top performers in supervised learning, demonstrate accuracies of approximately 0.7424, 0.8916, and 0.9431, respectively, for the same small sample sizes. Additionally, we discussed three key aspects: TSVM parameter configuration, the impact of unlabeled sample size, and performance within typical sample sizes. Our findings support semi-supervised learning as a promising approach compared to supervised learning for forest fire susceptibility assessment and mapping, particularly in scenarios with small sample sizes.
Assuntos
Florestas , Máquina de Vetores de Suporte , Aprendizado de Máquina Supervisionado , Incêndios , Incêndios Florestais , Ecossistema , ChinaRESUMO
Proper insulin management is vital for maintaining stable blood sugar levels and preventing complications associated with diabetes. However, the soaring costs of insulin present significant challenges to ensuring affordable management. This paper conducts a comprehensive review of current literature on the application of machine learning (ML) in insulin management for diabetes patients, particularly focusing on enhancing affordability and accessibility within the United States. The review encompasses various facets of insulin management, including dosage calculation and response, prediction of blood glucose and insulin sensitivity, initial insulin estimation, resistance prediction, treatment adherence, complications, hypoglycemia prediction, and lifestyle modifications. Additionally, the study identifies key limitations in the utilization of ML within the insulin management literature and suggests future research directions aimed at furthering accessible and affordable insulin treatments. These proposed directions include exploring insurance coverage, optimizing insulin type selection, assessing the impact of biosimilar insulin and market competition, considering mental health factors, evaluating insulin delivery options, addressing cost-related issues affecting insulin usage and adherence, and selecting appropriate patient cost-sharing programs. By examining the potential of ML in addressing insulin management affordability and accessibility, this work aims to envision improved and cost-effective insulin management practices. It not only highlights existing research gaps but also offers insights into future directions, guiding the development of innovative solutions that have the potential to revolutionize insulin management and benefit patients reliant on this life-saving treatment.
Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Insulina , Aprendizado de Máquina , Humanos , Glicemia/metabolismo , Glicemia/análise , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/economia , Insulina/economia , Insulina/metabolismo , Insulina/uso terapêuticoRESUMO
Many new reconstruction techniques have been deployed to allow low-dose CT examinations. Such reconstruction techniques exhibit nonlinear properties, which strengthen the need for a task-based measure of image quality. The Hotelling observer (HO) is the optimal linear observer and provides a lower bound of the Bayesian ideal observer detection performance. However, its computational complexity impedes its widespread practical usage. To address this issue, we proposed a self-supervised learning (SSL)-based model observer to provide accurate estimates of HO performance in very low-dose chest CT images. Our approach involved a two-stage model combining a convolutional denoising auto-encoder (CDAE) for feature extraction and dimensionality reduction and a support vector machine for classification. To evaluate this approach, we conducted signal detection tasks employing chest CT images with different noise structures generated by computer-based simulations. We compared this approach with two supervised learning-based methods: a single-layer neural network (SLNN) and a convolutional neural network (CNN). The results showed that the CDAE-based model was able to achieve similar detection performance to the HO. In addition, it outperformed both SLNN and CNN when a reduced number of training images was considered. The proposed approach holds promise for optimizing low-dose CT protocols across scanner platforms.
RESUMO
Roads are the fundamental elements of transportation, connecting cities and rural areas, as well as people's lives and work. They play a significant role in various areas such as map updates, economic development, tourism, and disaster management. The automatic extraction of road features from high-resolution remote sensing images has always been a hot and challenging topic in the field of remote sensing, and deep learning network models are widely used to extract roads from remote sensing images in recent years. In light of this, this paper systematically reviews and summarizes the deep-learning-based techniques for automatic road extraction from high-resolution remote sensing images. It reviews the application of deep learning network models in road extraction tasks and classifies these models into fully supervised learning, semi-supervised learning, and weakly supervised learning based on their use of labels. Finally, a summary and outlook of the current development of deep learning techniques in road extraction are provided.
RESUMO
OBJECTIVE: This study examined the application, feasibility, and validity of supervised learning models for text classification in appraisals for rare disease treatments (RDTs) in relation to uncertainty, and analyzed differences between appraisals based on the classification results. METHODS: We analyzed appraisals for RDTs (n = 94) published by the National Institute for Health and Care Excellence (NICE) between January 2011 and May 2023. We used Naïve Bayes, Lasso, and Support Vector Machine models in a binary text classification task (classifying paragraphs as either referencing uncertainty in the evidence base or not). To illustrate the results, we tested hypotheses in relation to the appraisal guidance, advanced therapy medicinal product (ATMP) status, disease area, and age group. RESULTS: The best performing (Lasso) model achieved 83.6 percent classification accuracy (sensitivity = 74.4 percent, specificity = 92.6 percent). Paragraphs classified as referencing uncertainty were significantly more likely to arise in highly specialized technology (HST) appraisals compared to appraisals from the technology appraisal (TA) guidance (adjusted odds ratio = 1.44, 95 percent CI 1.09, 1.90, p = 0.004). There was no significant association between paragraphs classified as referencing uncertainty and appraisals for ATMPs, non-oncology RDTs, and RDTs indicated for children only or adults and children. These results were robust to the threshold value used for classifying paragraphs but were sensitive to the choice of classification model. CONCLUSION: Using supervised learning models for text classification in NICE appraisals for RDTs is feasible, but the results of downstream analyses may be sensitive to the choice of classification model.
Assuntos
Doenças Raras , Avaliação da Tecnologia Biomédica , Adulto , Criança , Humanos , Incerteza , Doenças Raras/tratamento farmacológico , Teorema de Bayes , Avaliação da Tecnologia Biomédica/métodos , Análise Custo-BenefícioRESUMO
BACKGROUND: Atherosclerosis is one of the most frequent cardiovascular diseases. The dilemma faced by physicians is whether to treat or postpone the revascularization of lesions that fall within the intermediate range given by an invasive fractional flow reserve (FFR) measurement. The paper presents a monocentric study for lesions significance assessment that can potentially cause ischemia on the large coronary arteries. METHODS: A new dataset is acquired, comprising the optical coherence tomography (OCT) images, clinical parameters, echocardiography and FFR measurements collected from 80 patients with 102 lesions, with stable multivessel coronary artery disease. Having the ground truth given by the invasive FFR measurement, the dataset is challenging because almost 40% of the lesions are in the gray zone, having an FFR value between 0.75 and 0.85. Twenty-six features are extracted from OCT images, clinical characteristics, and echocardiography and the most relevant are identified by examining the models' accuracy. An ensembled learning is performed for solving the binary classification problem of lesion significance considering the leave-one-out cross-validation approach. RESULTS: Ensemble models are designed from the multi-features voting from 5 features models by prediction aggregation with a maximum accuracy of 81.37% and a maximum area under the curve score (AUC) of 0.856. CONCLUSIONS: The proposed explainable supervised learning-based lesion classification is a new method that can be improved by training with a larger multicenter dataset for further designing a tool for guiding the decision making of the clinician for the cases outside the gray zone and for the other situation extra clinical information about the lesion is needed.
Assuntos
Doença da Artéria Coronariana , Estenose Coronária , Reserva Fracionada de Fluxo Miocárdico , Humanos , Angiografia Coronária/métodos , Doença da Artéria Coronariana/diagnóstico por imagem , Vasos Coronários , Valor Preditivo dos Testes , Tomografia de Coerência Óptica/métodosRESUMO
Preliminary damage assessments (PDA) conducted in the aftermath of a disaster are a key first step in ensuring a resilient recovery. Conventional door-to-door inspection practices are time-consuming and may delay governmental resource allocation. A number of research efforts have proposed frameworks to automate PDA, typically relying on data sources from satellites, unmanned aerial vehicles, or ground vehicles, together with data processing using deep convolutional neural networks. However, before such frameworks can be adopted in practice, the accuracy and fidelity of predictions of damage level at the scale of an entire building must be comparable to human assessments. Towards this goal, we propose a PDA framework leveraging novel ultra-high-resolution aerial (UHRA) images combined with state-of-the-art transformer models to make multi-class damage predictions of entire buildings. We demonstrate that semi-supervised transformer models trained with vast amounts of unlabeled data are able to surpass the accuracy and generalization capabilities of state-of-the-art PDA frameworks. In our series of experiments, we aim to assess the impact of incorporating unlabeled data, as well as the use of different data sources and model architectures. By integrating UHRA images and semi-supervised transformer models, our results suggest that the framework can overcome the significant limitations of satellite imagery and traditional CNN models, leading to more accurate and efficient damage assessments.
RESUMO
Mobility is a vital welfare indicator that may influence broilers' daily activities. Classical broiler mobility assessment methods are laborious and cannot provide timely insights into their conditions. Here, we proposed a semi-supervised Deep Learning (DL) model, YOLOv5 (You Only Look Once version 5), combined with a deep sort algorithm conjoined with our newly proposed algorithm, neo-deep sort, for individual broiler mobility tracking. Initially, 1650 labeled images from five days were employed to train the YOLOv5 model. Through semi-supervised learning (SSL), this narrowly trained model was then used for pseudo-labeling 2160 images, of which 2153 were successfully labeled. Thereafter, the YOLOv5 model was fine-tuned on the newly labeled images. Lastly, the trained YOLOv5 and the neo-deep sort algorithm were applied to detect and track 28 broilers in two pens and categorize them in terms of hourly and daily travel distances and speeds. SSL helped in increasing the YOLOv5 model's mean average precision (mAP) in detecting birds from 81% to 98%. Compared with the manually measured covered distances of broilers, the combined model provided individual broilers' hourly moved distances with a validation accuracy of about 80%. Eventually, individual and flock-level mobilities were quantified while overcoming the occlusion, false, and miss-detection issues.
RESUMO
BACKGROUND: Predicting seizure likelihood for the following day would enable clinicians to extend or potentially schedule video-electroencephalography (EEG) monitoring when seizure risk is high. Combining standardized clinical data with short-term recordings of wearables to predict seizure likelihood could have high practical relevance as wearable data is easy and fast to collect. As a first step toward seizure forecasting, we classified patients based on whether they had seizures or not during the following recording. METHODS: Pediatric patients admitted to the epilepsy monitoring unit wore a wearable that recorded the heart rate (HR), heart rate variability (HRV), electrodermal activity (EDA), and peripheral body temperature. We utilized short recordings from 9:00 to 9:15 pm and compared mean values between patients with and without impending seizures. In addition, we collected clinical data: age, sex, age at first seizure, generalized slowing, focal slowing, and spikes on EEG, magnetic resonance imaging findings, and antiseizure medication reduction. We used conventional machine learning techniques with cross-validation to classify patients with and without impending seizures. RESULTS: We included 139 patients: 78 had no seizures and 61 had at least one seizure after 9 pm during the concurrent video-EEG and E4 recordings. HR (P < 0.01) and EDA (P < 0.01) were lower and HRV (P = 0.02) was higher for patients with than for patients without impending seizures. The average accuracy of group classification was 66%, and the mean area under the receiver operating characteristics was 0.72. CONCLUSIONS: Short-term wearable recordings in combination with clinical data have great potential as an easy-to-use seizure likelihood assessment tool.
RESUMO
OBJECTIVE: Ophthalmological pathologies such as glaucoma, diabetic retinopathy and age-related macular degeneration are major causes of blindness and vision impairment. There is a need for novel decision support tools that can simplify and speed up the diagnosis of these pathologies. A key step in this process is to automatically estimate the quality of the fundus images to make sure these are interpretable by a human operator or a machine learning model. We present a novel fundus image quality scale and deep learning (DL) model that can estimate fundus image quality relative to this new scale. METHODS: A total of 1245 images were graded for quality by two ophthalmologists within the range 1-10, with a resolution of 0.5. A DL regression model was trained for fundus image quality assessment. The architecture used was Inception-V3. The model was developed using a total of 89,947 images from 6 databases, of which 1245 were labeled by the specialists and the remaining 88,702 images were used for pre-training and semi-supervised learning. The final DL model was evaluated on an internal test set (n=209) as well as an external test set (n=194). RESULTS: The final DL model, denoted FundusQ-Net, achieved a mean absolute error of 0.61 (0.54-0.68) on the internal test set. When evaluated as a binary classification model on the public DRIMDB database as an external test set the model obtained an accuracy of 99%. SIGNIFICANCE: the proposed algorithm provides a new robust tool for automated quality grading of fundus images.
Assuntos
Aprendizado Profundo , Degeneração Macular , Humanos , Algoritmos , Aprendizado de Máquina , Fundo de Olho , Degeneração Macular/diagnóstico por imagemRESUMO
Recently, various sophisticated methods, including machine learning and artificial intelligence, have been employed to examine health-related data. Medical professionals are acquiring enhanced diagnostic and treatment abilities by utilizing machine learning applications in the healthcare domain. Medical data have been used by many researchers to detect diseases and identify patterns. In the current literature, there are very few studies that address machine learning algorithms to improve healthcare data accuracy and efficiency. We examined the effectiveness of machine learning algorithms in improving time series healthcare metrics for heart rate data transmission (accuracy and efficiency). In this paper, we reviewed several machine learning algorithms in healthcare applications. After a comprehensive overview and investigation of supervised and unsupervised machine learning algorithms, we also demonstrated time series tasks based on past values (along with reviewing their feasibility for both small and large datasets).
Assuntos
Inteligência Artificial , Setor de Assistência à Saúde , Aprendizado de Máquina , Algoritmos , Aprendizado de Máquina não SupervisionadoRESUMO
Introduction: The accurate severity assessment of wheat stripe rust is the basis for the pathogen-host interaction phenotyping, disease prediction, and disease control measure making. Methods: To realize the rapid and accurate severity assessment of the disease, the severity assessment methods of the disease were investigated based on machine learning in this study. Based on the actual percentages of the lesion areas in the areas of the corresponding whole single diseased wheat leaves of each severity class of the disease, obtained after the image segmentation operations on the acquired single diseased wheat leaf images and the pixel statistics operations on the segmented images by using image processing software, under two conditions of considering healthy single wheat leaves or not, the training and testing sets were constructed by using two modeling ratios of 4:1 and 3:2, respectively. Then, based on the training sets, two unsupervised learning methods including K-means clustering algorithm and spectral clustering and three supervised learning methods including support vector machine, random forest, and K-nearest neighbor were used to build severity assessment models of the disease, respectively. Results: Regardless of whether the healthy wheat leaves were considered or not, when the modeling ratios were 4:1 and 3:2, satisfactory assessment performances on the training and testing sets can be achieved by using the optimal models based on unsupervised learning and those based on supervised learning. In particular, the assessment performances obtained by using the optimal random forest models were the best, with the accuracies, precisions, recalls, and F1 scores for all the severity classes of the training and testing sets equal to 100.00% and the overall accuracies of the training and testing sets equal to 100.00%. Discussion: The simple, rapid, and easy-to-operate severity assessment methods based on machine learning were provided for wheat stripe rust in this study. This study provides a basis for the automatic severity assessment of wheat stripe rust based on image processing technology, and provides a reference for the severity assessments of other plant diseases.
RESUMO
Rheumatoid arthritis (RA) is a chronic, destructive condition that affects and destroys the joints of the hand, fingers, and legs. Patients may forfeit the ability to conduct a normal lifestyle if neglected. The requirement for implementing data science to improve medical care and disease monitoring is emerging rapidly as a consequence of advancements in computational technologies. Machine learning (ML) is one of these approaches that has emerged to resolve complicated issues across various scientific disciplines. Based on enormous amounts of data, ML enables the formulation of standards and drafting of the assessment process for complex diseases. ML can be expected to be very beneficial in assessing the underlying interdependencies in the disease progression and development of RA. This could perhaps improve our comprehension of the disease, promote health stratification, optimize treatment interventions, and speculate prognosis and outcomes.
Assuntos
Artrite Reumatoide , Promoção da Saúde , Humanos , Artrite Reumatoide/diagnóstico , Aprendizado de MáquinaRESUMO
BACKGROUND: Exposure to harmful and potentially harmful constituents in cigarette smoke is a risk factor for cardiovascular and respiratory diseases. Tobacco products that could reduce exposure to these constituents have been developed. However, the long-term effects of their use on health remain unclear. The Population Assessment of Tobacco and Health (PATH) study is a population-based study examining the health effects of smoking and cigarette smoking habits in the U.S. POPULATION: Participants include users of tobacco products, including electronic cigarettes and smokeless tobacco. In this study, we attempted to evaluate the population-wide effects of these products, using machine learning techniques and data from the PATH study. METHODS: Biomarkers of exposure (BoE) and potential harm (BoPH) in cigarette smokers and former smokers in wave 1 of PATH were used to create binary classification machine-learning models that classified participants as either current (BoE: N = 102, BoPH: N = 428) or former smokers (BoE: N = 102, BoPH: N = 428). Data on the BoE and BoPH of users of electronic cigarettes (BoE: N = 210, BoPH: N = 258) and smokeless tobacco (BoE: N = 206, BoPH: N = 242) were input into the models to investigate whether these product users were classified as current or former smokers. The disease status of individuals classified as either current or former smokers was investigated. RESULTS: The classification models for BoE and BoPH both had high model accuracy. More than 60% of participants who used either one of electronic cigarettes or smokeless tobacco were classified as former smokers in the classification model for BoE. Fewer than 15% of current smokers and dual users were classified as former smokers. A similar trend was found in the classification model for BoPH. Compared with those classified as former smokers, a higher percentage of those classified as current smokers had cardiovascular disease (9.9-10.9% vs. 6.3-6.4%) and respiratory diseases (19.4-22.2% vs. 14.2-16.7%). CONCLUSIONS: Users of electronic cigarettes or smokeless tobacco are likely to be similar to former smokers in their biomarkers of exposure and potential harm. This suggests that using these products helps to reduce exposure to the harmful constituents of cigarettes, and they are potentially less harmful than conventional cigarettes.
Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Tabaco sem Fumaça , Humanos , Fumantes , Fumar/epidemiologia , BiomarcadoresRESUMO
BACKGROUND: The current paradigm for evaluating computed tomography (CT) system performance relies on a task-based approach. As the Hotelling observer (HO) provides an upper bound of observer performances in specific signal detection tasks, the literature advocates HO use for optimization purposes. However, computing the HO requires calculating the inverse of the image covariance matrix, which is often intractable in medical applications. As an alternative, dimensionality reduction has been extensively investigated to extract the task-relevant features from the raw images. This can be achieved by using channels, which yields the channelized-HO (CHO). The channels are only considered efficient when the channelized observer (CO) can approximate its unconstrained counterpart. Previous work has demonstrated that supervised learning-based methods can usually benefit CO design, either for generating efficient channels using partial least squares (PLS) or for replacing the Hotelling detector with machine-learning (ML) methods. PURPOSE: Here we investigated the efficiency of a supervised ML-algorithm used to design a CO for predicting the performance of unconstrained HO. The ML-algorithm was applied either (1) in the estimator for dimensionality reduction, or (2) in the detector function. METHODS: A channelized support vector machine (CSVM) was employed and compared against the CHO in terms of ability to predict HO performances. Both the CSVM and the CHO were estimated with channels derived from the singular value decomposition (SVD) of the system operator, principal component analysis (PCA), and PLS. The huge variety of regularization strategies proposed by CT system vendors for statistical image reconstruction (SIR) make the generalization capability of an observer a key point to consider upfront of implementation in clinical practice. To evaluate the generalization properties of the observers, we adopted a 2-step testing process: (1) achieved with the same regularization strategy (as in the training phase) and (2) performed using different reconstruction properties. We generated simulated- signal-known-exactly/background-known-exactly (SKE/BKE) tasks in which different noise structures were generated using Markov random field (MRF) regularizations using either a Green or a quadratic, function. RESULTS: The CSVM outperformed the CHO for all types of channels and regularization strategies. Furthermore, even though both COs generalized well to images reconstructed with the same regularization strategy as the images considered in the training phase, the CHO failed to generalize to images reconstructed differently whereas the CSVM managed to successfully generalize. Lastly, the proposed CSVM observer used with PCA channels outperformed the CHO with PLS channels while using a smaller training data set. CONCLUSION: These results argue for introducing the supervised-learning paradigm in the detector function rather than in the operator of the channels when designing a CO to provide an accurate estimate of HO performance. The CSVM with PCA channels proposed here could be used as a surrogate for HO in image quality assessment.
Assuntos
Algoritmos , Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Aprendizado de Máquina Supervisionado , Máquina de Vetores de Suporte , Processamento de Imagem Assistida por Computador/métodos , Variações Dependentes do ObservadorRESUMO
General movement assessment (GMA) of infant movement videos (IMVs) is an effective method for early detection of cerebral palsy (CP) in infants. We demonstrate in this paper that end-to-end trainable neural networks for image sequence recognition can be applied to achieve good results in GMA, and more importantly, augmenting raw video with infant body parsing and pose estimation information can significantly improve performance. To solve the problem of efficiently utilizing partially labeled IMVs for body parsing, we propose a semi-supervised model, termed SiamParseNet (SPN), which consists of two branches, one for intra-frame body parts segmentation and another for inter-frame label propagation. During training, the two branches are jointly trained by alternating between using input pairs of only labeled frames and input of both labeled and unlabeled frames. We also investigate training data augmentation by proposing a factorized video generative adversarial network (FVGAN) to synthesize novel labeled frames for training. FVGAN decouples foreground and background generation which allows for generating multiple labeled frames from one real labeled frame. When testing, we employ a multi-source inference mechanism, where the final result for a test frame is either obtained via the segmentation branch or via propagation from a nearby key frame. We conduct extensive experiments for body parsing using SPN on two infant movement video datasets; on these partially labeled IMVs, we show that SPN coupled with FVGAN achieves state-of-the-art performance. We further demonstrate that our proposed SPN can be easily adapted to the infant pose estimation task with superior performance. Last but not least, we explore the clinical application of our method for GMA. We collected a new clinical IMV dataset with GMA annotations, and our experiments show that our SPN models for body parsing and pose estimation trained on the first two datasets generalize well to the new clinical dataset and their results can significantly boost the convolutional recurrent neural network (CRNN) based GMA prediction performance when combined with raw video inputs.
Assuntos
Movimento , Redes Neurais de Computação , Humanos , LactenteRESUMO
Establishing an objective quality assessment of an organ prior to transplantation can help prevent unnecessary discard of the organ and reduce the probability of functional failure. In this regard, normothermic machine perfusion (NMP) offers new possibilities for organ evaluation. However, to date, few studies have addressed the identification of markers and analytical tools to determine graft quality. In this study, function and injury markers were measured in blood and urine during NMP of 26 porcine kidneys and correlated with ex vivo inulin clearance behavior. Significant differentiation of kidneys according to their function could be achieved by oxygen consumption, oxygen delivery, renal blood flow, arterial pressure, intrarenal resistance, kidney temperature, relative urea concentration, and urine production. In addition, classifications were accomplished with supervised learning methods and histological analysis to predict renal function ex vivo. Classificators (support vector machines, k-nearest-neighbor, logistic regression and naive bayes) based on relevant markers in urine and blood achieved 75% and 83% accuracy in the validation and test set, respectively. A correlation between histological damage and function could not be detected. The measurement of blood and urine markers provides information of preoperative renal quality, which can used in future to establish an objective quality assessment.