Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
BMC Med Genet ; 21(1): 12, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31931749

RESUMO

BACKGROUND: Gaucher disease (GD) is a lysosomal disorder caused by biallelic pathogenic mutations in the GBA1 gene that encodes beta-glucosidase (GCase), and more rarely, by a deficiency in the GCase activator, saposin C. Clinically, GD manifests with heterogeneous multiorgan involvement mainly affecting hematological, hepatic and neurological axes. This disorder is divided into three types, based on the absence (type I) or presence and severity (types II and III) of involvement of the central nervous system. At the cellular level, deficiency of GBA1 disturbs lysosomal storage with buildup of glucocerebroside. The consequences of disturbed lysosomal metabolism on biochemical pathways that require lysosomal processing are unknown. Abnormal systemic markers of cobalamin (Cbl, B12) metabolism have been reported in patients with GD, suggesting impairments in lysosomal handling of Cbl or in its downstream utilization events. METHODS: Cultured skin fibroblasts from control humans (n = 3), from patients with GD types I (n = 1), II (n = 1) and III (n = 1) and an asymptomatic carrier of GD were examined for their GCase enzymatic activity and lysosomal compartment intactness. Control human and GD fibroblasts were cultured in growth medium with and without 500 nM hydroxocobalamin supplementation. Cellular cobalamin status was examined via determination of metabolomic markers in cell lysate (intracellular) and conditioned culture medium (extracellular). The presence of transcobalamin (TC) in whole cell lysates was examined by Western blot. RESULTS: Cultured skin fibroblasts from GD patients exhibited reduced GCase activity compared to healthy individuals and an asymptomatic carrier of GD, demonstrating a preserved disease phenotype in this cell type. The concentrations of total homocysteine (tHcy), methylmalonic acid (MMA), cysteine (Cys) and methionine (Met) in GD cells were comparable to control levels, except in one patient with GD III. The response of these metabolomic markers to supplementation with hydroxocobalamin (HOCbl) yielded variable results. The content of transcobalamin in whole cell lysates was comparable in control human and GD patients. CONCLUSIONS: Our results indicate that cobalamin transport and cellular processing pathways are overall protected from lysosomal storage damage in GD fibroblasts. Extending these studies to hepatocytes, macrophages and plasma will shed light on cell- and compartment-specific vitamin B12 metabolism in Gaucher disease.


Assuntos
Doença de Gaucher/genética , Glucosilceramidase/genética , Vitamina B 12/metabolismo , beta-Glucosidase/genética , Técnicas de Cultura de Células , Feminino , Fibroblastos/metabolismo , Doença de Gaucher/metabolismo , Doença de Gaucher/patologia , Homocisteína/metabolismo , Humanos , Lisossomos/metabolismo , Lisossomos/patologia , Masculino , Ácido Metilmalônico/metabolismo , Mutação , Fenótipo , Saposinas/genética , Transcobalaminas/metabolismo
2.
Sci Rep ; 9(1): 12366, 2019 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-31451751

RESUMO

Deficiency of propionyl-CoA carboxylase causes propionic acidemia and deficiencies of methylmalonyl-CoA mutase or its cofactor adenosylcobalamin cause methylmalonic acidemia. These inherited disorders lead to pathological accumulation of propionyl-CoA which is converted in Krebs cycle to methylcitrate (MCA) in a reaction catalyzed by citrate synthase. In healthy individuals where no propionyl-CoA accumulation occurs, this enzyme drives the condensation of acetyl-CoA with oxaloacetate to produce citric acid (CA), a normal Krebs cycle intermediate. The competitive synthesis of CA and MCA through the same enzymatic mechanism implies that increase in MCA production is accompanied by decrease in CA levels. In this study, we assessed MCA concentration and the ratio of MCA/CA as plausible markers for propionic and methylmalonic acidemias. We measured MCA and CA in dried blood spots using liquid chromatography tandem mass spectrometry. The reference ranges of MCA, CA and MCA/CA in 123 healthy individuals were ≤0.63 µmol/L, 36.6-126.4 µmol/L and 0.0019-0.0074, respectively. In patients with propionic and methylmalnic acidemias (n = 7), MCA concentration ranged between 1.0-12.0 µmol/L whereas MCA/CA was between 0.012-0.279. This is the first report to describe the potential role of MCA and MCA/CA in dried blood spots as diagnostic and monitoring biomarkers for inherited disorders of propionyl-CoA metabolism.


Assuntos
Biomarcadores/sangue , Citratos/sangue , Teste em Amostras de Sangue Seco , Erros Inatos do Metabolismo/sangue , Propionatos/sangue , Propionatos/metabolismo , Bioensaio , Estudos de Casos e Controles , Humanos , Ácido Metilmalônico/metabolismo
3.
Eur J Nucl Med Mol Imaging ; 39(9): 1400-8, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22699524

RESUMO

PURPOSE: Early assessment of tumor response to therapy is vital for treatment optimization for the individual cancer patient. Induction of apoptosis is an early and nearly universal effect of anticancer therapies. The purpose of this study was to assess the performance of (18)F-ML-10, a novel PET radiotracer for apoptosis, as a tool for the early detection of response of brain metastases to whole-brain radiation therapy (WBRT). MATERIALS AND METHODS: Ten patients with brain metastases treated with WBRT at 30 Gy in ten daily fractions were enrolled in this trial. Each patient underwent two (18)F-ML-10 PET scans, one prior to the radiation therapy (baseline scan), and the second after nine or ten fractions of radiotherapy (follow-up scan). MRI was performed at 6-8 weeks following completion of the radiation therapy. Early treatment-induced changes in tumor (18)F-ML-10 uptake on the PET scan were measured by voxel-based analysis, and were then evaluated by correlation analysis as predictors of the extent of later changes in tumor anatomical dimensions as seen on MRI scans 6-8 weeks after completion of therapy. RESULTS: In all ten patients, all brain lesions were detected by both MRI and the (18)F-ML-10 PET scan. A highly significant correlation was found between early changes on the (18)F-ML-10 scan and later changes in tumor anatomical dimensions (r = 0.9). CONCLUSION: These results support the potential of (18)F-ML-10 PET as a novel tool for the early detection of response of brain metastases to WBRT.


Assuntos
Apoptose , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Ácido Metilmalônico/análogos & derivados , Tomografia por Emissão de Pósitrons/métodos , Adulto , Idoso , Transporte Biológico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/secundário , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Ácido Metilmalônico/efeitos adversos , Ácido Metilmalônico/metabolismo , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons/efeitos adversos , Traçadores Radioativos , Segurança , Razão Sinal-Ruído , Resultado do Tratamento
4.
J Inherit Metab Dis ; 27(1): 111-2, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15065575

RESUMO

Resting energy expenditure (REE) was investigated in 8 children with propionic and methylmalonic acidaemias because a lowered REE has been reported in the literature. We observed a marginally elevated REE and think that adequate caloric intake and the use of a synthetic amino acid mixture are responsible for this.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Metabolismo Energético , Ácido Metilmalônico/metabolismo , Propionatos/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/tratamento farmacológico , Aminoácidos/uso terapêutico , Criança , Pré-Escolar , Combinação de Medicamentos , Ingestão de Energia , Feminino , Humanos , Lactente , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA