Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nat Commun ; 12(1): 2317, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33875651

RESUMO

Plant immunity frequently incurs growth penalties, which known as the trade-off between immunity and growth. Heterosis, the phenotypic superiority of a hybrid over its parents, has been demonstrated for many traits but rarely for disease resistance. Here, we report that the central circadian oscillator, CCA1, confers heterosis for bacterial defense in hybrids without growth vigor costs, and it even significantly enhances the growth heterosis of hybrids under pathogen infection. The genetic perturbation of CCA1 abrogated heterosis for both defense and growth in hybrids. Upon pathogen attack, the expression of CCA1 in F1 hybrids is precisely modulated at different time points during the day by its rhythmic histone modifications. Before dawn of the first infection day, epigenetic activation of CCA1 promotes an elevation of salicylic acid accumulation in hybrids, enabling heterosis for defense. During the middle of every infection day, diurnal epigenetic repression of CCA1 leads to rhythmically increased chlorophyll synthesis and starch metabolism in hybrids, effectively eliminating the immunity-growth heterosis trade-offs in hybrids.


Assuntos
Arabidopsis/genética , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Vigor Híbrido/genética , Hibridização Genética/genética , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Bactérias/crescimento & desenvolvimento , Clorofila/metabolismo , Epigênese Genética/genética , Plantas Geneticamente Modificadas , Ácido Salicílico/metabolismo , Amido/metabolismo , Fatores de Transcrição/genética
2.
Regul Toxicol Pharmacol ; 114: 104656, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32437818

RESUMO

Additional non-animal methods are urgently needed to meet regulatory and animal welfare goals. TTC is a broadly used risk assessment tool. TTC based on external dose has limited utility for multi-route exposure and some types of structure activity relationship assessments. An internal TTC (iTTC), where thresholds are based on blood concentration, would extend the applicability of TTC. While work is on-going to develop robust iTTC thresholds, we propose an interim conservative iTTC. Specifically, an interim iTTC of 1 µM, supported by the published experience of the pharmaceutical industry, a literature review of non-drug chemical/receptor interactions, and analysis of ToxCast™ data. ToxCast™ data were used to explore activity versus the 1 µM interim iTTC and recommendations for the analysis and interpretation of HTS data. Test concentration-based points of departure were classified to identify quality of fit to the Hill Model. We identified, for exclusion from the approach, estrogen receptor and androgen receptor targets as potent chemical/receptor interactions potentially associated with low dose exposure to non-pharmaceutical active ingredients in addition to the original TTC exclusions. With these exclusions, we conclude that a 1 µM plasma concentration is unlikely to be associated with significant biological effects from chemicals not intentionally designed for biological activity.


Assuntos
Ácido Acético/efeitos adversos , Aspirina/efeitos adversos , Automação , Receptores Androgênicos/metabolismo , Ácido Salicílico/efeitos adversos , Ácido Acético/química , Ácido Acético/metabolismo , Animais , Aspirina/química , Aspirina/metabolismo , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Nível de Efeito Adverso não Observado , Receptores Androgênicos/química , Medição de Risco , Ácido Salicílico/química , Ácido Salicílico/metabolismo , Relação Estrutura-Atividade
3.
Int J Mol Sci ; 20(7)2019 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-30935036

RESUMO

Systemic acquired resistance (SAR) induction is one of the primary defence mechanisms of plants against a broad range of pathogens. It can be induced by infectious agents or by synthetic molecules, such as benzo(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH). SAR induction is associated with increases in salicylic acid (SA) accumulation and expression of defence marker genes (e.g., phenylalanine ammonia-lyase (PAL), the pathogenesis-related (PR) protein family, and non-expressor of PR genes (NPR1)). Various types of pathogens and pests induce plant responses by activating signalling pathways associated with SA, jasmonic acid (JA) and ethylene (ET). This work presents an analysis of the influence of BTH and its derivatives as resistance inducers in healthy and virus-infected plants by determining the expression levels of selected resistance markers associated with the SA, JA, and ET pathways. The phytotoxic effects of these compounds and their influence on the course of viral infection were also studied. Based on the results obtained, the best-performing BTH derivatives and their optimal concentration for plant performance were selected, and their mode of action was suggested. It was shown that application of BTH and its derivatives induces increased expression of marker genes of both the SA- and JA-mediated pathways.


Assuntos
Resistência à Doença/efeitos dos fármacos , Nicotiana/imunologia , Tiadiazóis/farmacologia , Ciclopentanos/metabolismo , Etilenos/metabolismo , Oxilipinas/metabolismo , Ácido Salicílico/metabolismo , Nicotiana/efeitos dos fármacos , Nicotiana/virologia , Tobamovirus/patogenicidade
4.
J Exp Bot ; 69(15): 3675-3688, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29912376

RESUMO

Plants use a tightly regulated immune system to fight off various pathogens. Phospholipase D (PLD) and its product, phosphatidic acid, have been shown to influence plant immunity; however, the underlying mechanisms remain unclear. Here, we show that the Arabidopsis mutants pldα1 and pldδ, respectively, exhibited enhanced resistance and enhanced susceptibility to both well-adapted and poorly adapted powdery mildew pathogens, and a virulent oomycete pathogen, indicating that PLDα1 negatively while PLDδ positively modulates post-penetration resistance. The pldα1δ double mutant showed a similar infection phenotype to pldα1, genetically placing PLDα1 downstream of PLDδ. Detailed genetic analyses of pldδ with mutations in genes for salicylic acid (SA) synthesis (SID2) and/or signaling (EDS1 and PAD4), measurement of SA and jasmonic acid (JA) levels, and expression of their respective reporter genes indicate that PLDδ contributes to basal resistance independent of EDS1/PAD4, SA, and JAsignaling. Interestingly, while PLDα1-enhanced green fluorescent protein (eGFP) was mainly found in the tonoplast before and after haustorium invasion, PLDδ-eGFP's focal accumulation to the plasma membrane around the fungal penetration site appeared to be suppressed by adapted powdery mildew. Together, our results demonstrate that PLDα1 and PLDδ oppositely modulate basal, post-penetration resistance against powdery mildew through a non-canonical mechanism that is independent of EDS1/PAD4, SA, and JA.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Ascomicetos/fisiologia , Fosfolipase D/metabolismo , Doenças das Plantas/imunologia , Ácido Salicílico/metabolismo , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Fosfolipase D/economia , Fosfolipase D/genética , Doenças das Plantas/microbiologia , Imunidade Vegetal
5.
New Phytol ; 218(3): 1205-1216, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29465773

RESUMO

ß-Aminobutyric acid (BABA) induces broad-spectrum disease resistance, but also represses plant growth, which has limited its exploitation in crop protection. BABA perception relies on binding to the aspartyl-tRNA synthetase (AspRS) IBI1, which primes the enzyme for secondary defense activity. This study aimed to identify structural BABA analogues that induce resistance without stunting plant growth. Using site-directed mutagenesis, we demonstrate that the (l)-aspartic acid-binding domain of IBI1 is critical for BABA perception. Based on interaction models of this domain, we screened a small library of structural BABA analogues for growth repression and induced resistance against biotrophic Hyaloperonospora arabidopsidis (Hpa). A range of resistance-inducing compounds were identified, of which (R)-ß-homoserine (RBH) was the most effective. Surprisingly, RBH acted through different pathways than BABA. RBH-induced resistance (RBH-IR) against Hpa functioned independently of salicylic acid, partially relied on camalexin, and was associated with augmented cell wall defense. RBH-IR against necrotrophic Plectosphaerella cucumerina acted via priming of ethylene and jasmonic acid defenses. RBH-IR was also effective in tomato against Botrytis cinerea. Metabolic profiling revealed that RBH, unlike BABA, does not majorly affect plant metabolism. RBH primes distinct defense pathways against biotrophic and necrotrophic pathogens without stunting plant growth, signifying strong potential for exploitation in crop protection.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/imunologia , Desenvolvimento Vegetal , Imunidade Vegetal , Aminobutiratos/farmacologia , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Simulação por Computador , Resistência à Doença/efeitos dos fármacos , Etilenos/metabolismo , Fungos/fisiologia , Homosserina/farmacologia , Indóis/metabolismo , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , Mutação/genética , Desenvolvimento Vegetal/efeitos dos fármacos , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/efeitos dos fármacos , Domínios Proteicos , Ácido Salicílico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tiazóis/metabolismo
6.
Mol Ecol ; 27(8): 1833-1847, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29087012

RESUMO

Plant-associated soil microbes are important mediators of plant defence responses to diverse above-ground pathogen and insect challengers. For example, closely related strains of beneficial rhizosphere Pseudomonas spp. can induce systemic resistance (ISR), systemic susceptibility (ISS) or neither against the bacterial foliar pathogen Pseudomonas syringae pv. tomato DC3000 (Pto DC3000). Using a model system composed of root-associated Pseudomonas spp. strains, the foliar pathogen Pto DC3000 and the herbivore Trichoplusia ni (cabbage looper), we found that rhizosphere-associated Pseudomonas spp. that induce either ISS and ISR against Pto DC3000 all increased resistance to herbivory by T. ni. We found that resistance to T. ni and resistance to Pto DC3000 are quantitative metrics of the jasmonic acid (JA)/salicylic acid (SA) trade-off and distinct strains of rhizosphere-associated Pseudomonas spp. have distinct effects on the JA/SA trade-off. Using genetic analysis and transcriptional profiling, we provide evidence that treatment of Arabidopsis with Pseudomonas sp. CH267, which induces ISS against bacterial pathogens, tips the JA/SA trade-off towards JA-dependent defences against herbivores at the cost of a subset of SA-mediated defences against bacterial pathogens. In contrast, treatment of Arabidopsis with the ISR strain Pseudomonas sp. WCS417 disrupts JA/SA antagonism and simultaneously primes plants for both JA- and SA-mediated defences. Our findings show that ISS against the bacterial foliar pathogens triggered by Pseudomonas sp. CH267, which is a seemingly deleterious phenotype, may in fact be an adaptive consequence of increased resistance to herbivory. Our work shows that pleiotropic effects of microbiome modulation of plant defences are important to consider when using microbes to modify plant traits in agriculture.


Assuntos
Arabidopsis/genética , Brassicaceae/genética , Doenças das Plantas/genética , Pseudomonas syringae/patogenicidade , Arabidopsis/microbiologia , Brassicaceae/microbiologia , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Herbivoria/genética , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia , Oxilipinas/metabolismo , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/genética , Folhas de Planta/microbiologia , Pseudomonas syringae/genética , Rizosfera , Ácido Salicílico/metabolismo
7.
Plant Physiol ; 170(2): 891-906, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26603653

RESUMO

Plants respond to herbivory with the induction of resistance, mediated by distinct phytohormonal signaling pathways and their interactions. Phloem feeders are known to induce plant resistance via the salicylic acid pathway, whereas biting-chewing herbivores induce plant resistance mainly via the jasmonate pathway. Here, we show that a specialist caterpillar (biting-chewing herbivore) and a specialist aphid (phloem feeder) differentially induce resistance against Pieris brassicae caterpillars in Arabidopsis (Arabidopsis thaliana) plants. Caterpillar feeding induces resistance through the jasmonate signaling pathway that is associated with the induction of kaempferol 3,7-dirhamnoside, whereas aphid feeding induces resistance via a novel mechanism involving sinapoyl malate. The role of sinapoyl malate is confirmed through the use of a mutant compromised in the biosynthesis of this compound. Caterpillar-induced resistance is associated with a lower cost in terms of plant growth reduction than aphid-induced resistance. A strong constitutive resistance against P. brassicae caterpillars in combination with a strong growth attenuation in plants of a transfer DNA (T-DNA) insertion mutant of WRKY70 (wrky70) suggest that the WRKY70 transcription factor, a regulator of downstream responses mediated by jasmonate-salicylic acid signaling cross talk, is involved in the negative regulation of caterpillar resistance and in the tradeoff between growth and defense. In conclusion, different mechanisms of herbivore-induced resistance come with different costs, and a functional WRKY70 transcription factor is required for the induction of low-cost resistance.


Assuntos
Arabidopsis/parasitologia , Resistência à Doença , Herbivoria/fisiologia , Animais , Afídeos/fisiologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Biomassa , Vias Biossintéticas/genética , Ciclopentanos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glucosinolatos/metabolismo , Quempferóis/metabolismo , Larva/fisiologia , Malatos/metabolismo , Oxilipinas/metabolismo , Fenilpropionatos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ácido Salicílico/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo
8.
PLoS Comput Biol ; 7(5): e1002047, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21625579

RESUMO

The entanglement of lignin polymers with cellulose and hemicellulose in plant cell walls is a major biological barrier to the economically viable production of biofuels from woody biomass. Recent efforts of reducing this recalcitrance with transgenic techniques have been showing promise for ameliorating or even obviating the need for costly pretreatments that are otherwise required to remove lignin from cellulose and hemicelluloses. At the same time, genetic manipulations of lignin biosynthetic enzymes have sometimes yielded unforeseen consequences on lignin composition, thus raising the question of whether the current understanding of the pathway is indeed correct. To address this question systemically, we developed and applied a novel modeling approach that, instead of analyzing the pathway within a single target context, permits a comprehensive, simultaneous investigation of different datasets in wild type and transgenic plants. Specifically, the proposed approach combines static flux-based analysis with a Monte Carlo simulation in which very many randomly chosen sets of parameter values are evaluated against kinetic models of lignin biosynthesis in different stem internodes of wild type and lignin-modified alfalfa plants. In addition to four new postulates that address the reversibility of some key reactions, the modeling effort led to two novel postulates regarding the control of the lignin biosynthetic pathway. The first posits functionally independent pathways toward the synthesis of different lignin monomers, while the second postulate proposes a novel feedforward regulatory mechanism. Subsequent laboratory experiments have identified the signaling molecule salicylic acid as a potential mediator of the postulated control mechanism. Overall, the results demonstrate that mathematical modeling can be a valuable complement to conventional transgenic approaches and that it can provide biological insights that are otherwise difficult to obtain.


Assuntos
Álcoois/metabolismo , Lignina/biossíntese , Medicago sativa/metabolismo , Metabolômica , Plantas Geneticamente Modificadas/metabolismo , Simulação por Computador , Medicago sativa/genética , Método de Monte Carlo , Ácido Salicílico/metabolismo
9.
J Virol Methods ; 146(1-2): 165-71, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17689672

RESUMO

Studies were undertaken to evaluate ozone for inactivation of Cucumber mosaic virus present in the inoculum and to stimulate Lycopersicon esculentum cv. PKM1 (tomato) plants against Cucumber mosaic virus infection by using the inactivated Cucumber mosaic virus inoculum. Application of a T(4) (0.4mg/l) concentration of ozone to the inoculum containing Cucumber mosaic virus resulted in complete inactivation of the virus. The inactivated viral inoculum was mixed with a penetrator (delivery agent), referred to as T(4) preparation, and it was evaluated for the development of systemic acquired resistance in the tomato plants. Application of a T(4) preparation 5 days before inoculation with the Cucumber mosaic virus protected tomato plants from the effects of Cucumber mosaic virus. Among the components of the inactivated virus tested, coat protein subunits and aggregates were responsible for the acquired resistance in tomato plants. In field trials, the results of enzyme-linked immunosorbent assay revealed that, Cucumber mosaic virus accumulation was significantly less for all the test plants (16%) sprayed with the T(4) preparation than untreated control plants (89.5%) at 28 days postinoculation (dpi). A remarkable increase in the activities of the total soluble phenolics (10-fold) and salicylic acid (16-fold) was detected 5 days after the treatment in foliar extracts of test plants relative to untreated control plants. The results showed that treatment of tomato plants with inactivated viral inoculum led to a significant enhancement of protection against Cucumber mosaic virus attack in a manner that mimics a real pathogen and induces systemic acquired resistance.


Assuntos
Cucumovirus/efeitos dos fármacos , Ozônio/farmacologia , Solanum lycopersicum/virologia , Inativação de Vírus , Análise Custo-Benefício , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/imunologia , Solanum lycopersicum/metabolismo , Fenóis/metabolismo , Doenças das Plantas/virologia , Ácido Salicílico/metabolismo , Virologia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA