Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 930: 172696, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38657800

RESUMO

Phthalates (PAEs) are a typical class of endocrine disruptors (EEDs). As one of the most commonly used plasticizers, they have received widespread attention due to their wide application in various countries and high detection rates in various environmental media. To be able to clarify the contamination status of PAEs pollutants in a typical northern cold-temperate urban river, 30 water samples from Yitong River in Changchun City, northern China were collected, during the 2023 dry season (March), normal season (May) and wet season (July). Using these samples, a total of 16 target PAEs are investigated. The resulting total PAEs concentrations are: dry season 408 to 1494 ng/L, wet season 491 to 1299 ng/L, and normal season 341 to 780 ng/L. The average concentration of the 16 PAEs over the three seasons is 773 ng/L. Di-2-ethylhexyl phthalate (DEHP) and Dibutyl phthalate (DBP) have the highest concentrations, ranging from 12 to 403 ng/L and 28-680 ng/L respectively. The ecological risks within the Yitong River Basin are evaluated based on the degree of PAEs contamination. DBP and DEHP pose higher risk assessment levels for algae, crustaceans and fish than the other target PAEs. The accurate determination of PAEs provided baseline data on PAEs for the management of the Yitong River, which is of great significance for the prediction of ecological risk assessment and the development of corresponding control measures, supported further research on PAEs in the cold-temperate zone aquatic environments, and shed light on the seasonal variations of PAEs in the Northeast region in the future. Moreover, considering the bioaccumulation and persistence of PAEs, it is necessary to continue to pay attention to the pollution status of cold-temperate zones rivers and the changes in ecological risks in the future.


Assuntos
Monitoramento Ambiental , Ácidos Ftálicos , Rios , Estações do Ano , Poluentes Químicos da Água , China , Rios/química , Ácidos Ftálicos/análise , Poluentes Químicos da Água/análise , Medição de Risco , Disruptores Endócrinos/análise
2.
Chemosphere ; 357: 142041, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636919

RESUMO

Phthalate esters (PAEs) are widely prevalent in agricultural soil and pose potential risks to crop growth and food safety. However, the current understanding of factors influencing the behavior and fate of PAEs is limited. This study conducted a large-scale investigation (106 sites in 18 counties with 44 crop types) of 16 types of PAEs on a tropical island. Special attention was given to the impacts of land use type, soil environmental conditions, agricultural activity intensity, and urbanization level. The health risks to adults and children from soil PAEs via multiple routes of exposure were also evaluated. The results showed that the mean concentration of PAEs was 451.87 ± 284.08 µg kg-1 in the agricultural soil. Elevated agricultural and urbanization activities contributed to more pronounced contamination by PAEs in the northern and southern regions. Land use type strongly affected the concentration and composition of PAEs in agricultural soils, and the soil PAE concentration decreased in the order of vegetable fields, orchards, paddy fields, and woodlands. In paddy fields, di-isobutyl phthalate and di-n-butyl phthalate made more substantial contributions to the process through which the overlying water inhibited volatilization. Soil microplastic abundance, pesticide usage, crop yield, gross domestic product, and distance to the nearest city were calculated to be the major factors influencing the concentration and distribution of PAEs. Soil pH, organic matter content, microplastic abundance and the fertilizer application rate can affect the adsorption of PAEs by changing the soil environment. A greater risk was detected in the northern region and paddy fields due to the higher soil PAE concentrations and the dietary structure of the population. This study reveals important pathways influencing the sources and fate of PAE pollution in agricultural soils, providing fundamental data for controlling PAE contamination.


Assuntos
Agricultura , Monitoramento Ambiental , Ácidos Ftálicos , Poluentes do Solo , Solo , Poluentes do Solo/análise , Ácidos Ftálicos/análise , Solo/química , Medição de Risco , Ésteres/análise , Humanos , Ilhas
3.
Chemosphere ; 358: 142055, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38641292

RESUMO

The impact of desalination brine on the marine environment is a global concern. Regarding this, salinity is generally accepted as the major environmental factor in desalination concentrate. However, recent studies have shown that the influence of organic contaminants in brine cannot be ignored. Therefore, a non-targeted screening method based on comprehensive two-dimensional gas chromatography-quadrupole mass spectrometry (GC × GC-qMS) was developed for identifying organic contaminants in the desalination brine. A total of 404 compounds were tentatively identified from four seawater desalination plants (three reverse osmosis plants and one multiple effect distillation plant) in China. The identified compounds were prioritized based on their persistence, bioaccumulation, ecotoxicity, usage, and detection frequency. Twenty-one (21) compounds (seven phthalates, ten pesticides, four trihalomethanes) were then selected for further quantitative analysis and ecological risk assessment, including compounds from the priority list along with substances from the same chemical classes. Ecologically risky substances in brine include diisobutylphthalate and bis(2-Ethylhexyl) phthalate, atrazine and acetochlor, and bromoform. Most of the contaminants come from raw seawater, and no high risk contaminants introduced by the desalination process have been found except for disinfection by-products. In brine discharge management, people believed that all pollution in raw seawater was concentrated by desalination process. This study shows that not all pollutants are concentrated during the desalination process. In this study, the total concentration of pesticide in the brine increased by 58.42%. The concentration of ∑PAEs decreased by 13.65% in reverse osmosis desalination plants and increased by 10.96% in the multi-effect distillation plant. The concentration of trihalomethane increased significantly in the desalination concentrate. The change in the concentration of pollutants in the desalination concentrate was related to the pretreatment method and the chemical characteristics of the contaminants. The method and results given in this study hinted a new idea to identify and control the environmental impact factors of brine.


Assuntos
Salinidade , Água do Mar , Poluentes Químicos da Água , Purificação da Água , Água do Mar/química , Poluentes Químicos da Água/análise , Medição de Risco , Purificação da Água/métodos , China , Monitoramento Ambiental/métodos , Praguicidas/análise , Cromatografia Gasosa-Espectrometria de Massas , Sais/química , Ácidos Ftálicos/análise , Trialometanos/análise
4.
Arch Environ Contam Toxicol ; 86(3): 288-303, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38568248

RESUMO

In this study, the occurrence of phthalates in the municipal water supply of Nagpur City, India, was studied for the first time. The study aimed to provide insights into the extent of phthalate contamination and identify potential sources of contamination in the city's tap water. We analyzed fifteen phthalates and the total concentration (∑15phthalates) ranged from 0.27 to 76.36 µg L-1. Prominent phthalates identified were di-n-butyl phthalate (DBP), di-isobutyl phthalate (DIBP), benzyl butyl phthalate (BBP), di (2-ethylhexyl) phthalate (DEHP), di-n-octyl phthalate (DNOP), and di-nonyl phthalate (DNP). Out of the fifteen phthalates analyzed, DEHP showed the highest concentration in all the samples with the median concentration of 2.27 µg L-1, 1.39 µg L-1, 1.83 µg L-1, 2.02 µg L-1, respectively in Butibori, Gandhibaag, Civil Lines, and Kalmeshwar areas of the city. In 30% of the tap water samples, DEHP was found higher than the EPA maximum contaminant level of 6 µg L-1. The average daily intake (ADI) of phthalates via consumption of tap water was higher for adults (median: 0.25 µg kg-1 day-1) compared to children (median: 0.07 µg kg-1 day-1). The hazard index (HI) calculated for both adults and children was below the threshold level, indicating no significant health risks from chronic toxic risk. However, the maximum carcinogenic risk (CR) for adults (8.44 × 10-3) and children (7.73 × 10-3) was higher than the threshold level. Knowledge of the sources and distribution of phthalate contamination in municipal drinking water is crucial for effective contamination control and management strategies.


Assuntos
Dietilexilftalato , Água Potável , Ácidos Ftálicos , Criança , Adulto , Humanos , Ácidos Ftálicos/análise , Abastecimento de Água , Medição de Risco
5.
Sci Total Environ ; 927: 172044, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38554953

RESUMO

Sedimentary records of polycyclic aromatic hydrocarbons (PAHs) and phthalates could reflect energy consumption and industrial production adjustment. However, there is limited knowledge about their effects on variations of PAH and phthalate compositions in the sediment core. The PAH and phthalate sedimentary records in Huguangyan Maar Lake in Guangdong, China were constructed, and random forest models were adopted to quantify the associated impact factors. Sums of sixteen PAH (∑16 PAH) and seven phthalate (∑7 PAE) concentrations in the sediment ranged from 28.8 to 1110 and 246-4290 µg/kg dry weight in 1900-2020. Proportions of 5-6 ring PAHs to the ∑16 PAHs increased from 32.0 %-40.7 % in 1900-2020 with increased coal and petroleum consumption, especially after 1980. However, those of 2-3 ring PAHs decreased from 30.7 % to 23.6 % due to the biomass substitution with natural gas. The proportions of bis (2-ethylhexyl) phthalate to the ∑7 PAEs decreased from 52.3 %-29.1 % in 1900-2020, while those of di-isobutyl phthalate increased (13.7 % to 42.3 %). The shift from traditional plasticizers to non-phthalates drove this transformation, though the primary plastic production is increasing. Our findings underscore the effectiveness of optimizing energy structures and updating chemical products in reducing organic pollution in aquatic environments.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Lagos , Ácidos Ftálicos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , China , Sedimentos Geológicos/química , Lagos/química , Poluentes Químicos da Água/análise , Ácidos Ftálicos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Desenvolvimento Econômico
6.
Chemosphere ; 353: 141564, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417490

RESUMO

In recent years, the atmospheric pollution caused by phthalate esters (PAEs) has been increasing due to the widespread use of PAE-containing materials. Existing research on atmospheric PAEs lacks long-term continuous observation and samples from cities in central China. To investigate the pollution characteristics, sources, and health risks of PAEs in the ambient air of a typical city in central China, daily PM2.5 samples were collected in Nanchang from November 2020 to October 2021. In this study, the detection and quantification of six significant PAE contaminants, namely diethyl phthalate (DEP), di-n-butyl phthalate (DnBP), diisobutyl phthalate (DIBP), Di-2-ethylhexyl phthalate (DEHP), di-n-octyl phthalate (DnOP), and diisodecyl phthalate (DIDP), were accomplished using gas chromatography and mass spectrometry. The results revealed that the concentrations of DEP, DnBP, DEHP, and DnOP were relatively high. Higher temperatures promote the volatilization of PAEs, leading to an increase in the gaseous and particulate PAE concentrations in warm seasons and winter pollution scenarios. The results of principal component analysis show that PAEs mainly come from volatile products and polyvinylchloride plastics. Using positive matrix factorization analysis, it is shown that these two sources contribute 67.0% and 33.0% in atmosphere PAEs, respectively. Seasonally, the contribution of volatile products to both gaseous and particulate PAEs substantially increases during warm seasons. The residents in Nanchang exposed to PAEs have a negligible non-cancer risk and a potential low cancer risk. During the warm seasons, more PAEs are emitted into the air, which will increase the toxicity of PAEs and their impact on human health.


Assuntos
2,4-Dinitrofenol/análogos & derivados , Dietilexilftalato , Ácidos Ftálicos , Humanos , Dietilexilftalato/análise , Cromatografia Gasosa-Espectrometria de Massas , Ácidos Ftálicos/análise , Dibutilftalato/análise , Poeira/análise , China , Ésteres/análise
7.
Environ Pollut ; 345: 123475, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38331241

RESUMO

Indoor dust can contribute substantially to human exposure to known and contaminants of emerging concern (CECs). Novel compounds with high structural variability and different homologues are frequently discovered through screening of the indoor environment, implying that constant monitoring is required. The present study aimed at the identification and semi-quantification of CECs in 46 indoor dust samples collected in Belgium by liquid chromatography high-resolution mass spectrometry. Samples were analyzed applying a targeted and suspect screening approach; the latter based on a suspect list containing >4000 CECs. This allowed the detection of a total of 55 CECs, 34 and 21 of which were identified with confidence level (CL) 1/2 or CL 3, respectively. Besides numerous known contaminants such as di(2-ethylhexyl) phthalate (DEHP), di(2-ethylhexyl) adipate (DEHA) or tris(2-butoxyethyl) phosphate (TBOEP) which were reported with detection frequencies (DFs) > 90%, several novel CECs were annotated. These included phthalates with differing side chains, such as decyl nonyl and decyl undecyl phthalate detected with DFs >80% and identified through the observation of characteristic neutral losses. Additionally, two novel organophosphate flame retardants not previously described in indoor dust, i.e. didecyl butoxyethoxyethyl phosphate (DDeBEEP) and bis(butoxyethyl) butyl phosphate (BBEBP), were identified. The implementation of a dedicated workflow provided semi-quantitative concentrations for a set of suspects. Such data obtained for novel phthalates were in the same order of magnitude as the concentrations observed for legacy phthalates indicating their high relevance for human exposure. From the semi-quantitative data, estimated daily intakes and resulting hazard quotients (HQs) were calculated to estimate the exposure and potential health effects. Neither of the obtained HQ values exceeded the risk threshold, indicating no expected adverse health effects.


Assuntos
Poluição do Ar em Ambientes Fechados , Retardadores de Chama , Ácidos Ftálicos , Humanos , Monitoramento Ambiental/métodos , Poluição do Ar em Ambientes Fechados/análise , Poeira/análise , Ácidos Ftálicos/análise , Organofosfatos/análise , Espectrometria de Massas , Fosfatos/análise , Medição de Risco , Retardadores de Chama/análise , Exposição Ambiental/análise
8.
Chemosphere ; 350: 141059, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38163469

RESUMO

Phthalate acid esters (PAEs) are frequently detected in the global environment and can cause potential health hazards. In this study, quantitative exposure risk assessment was undertaken to derive soil generic assessment criteria (GAC) for six representative PAEs under the agricultural land use in the evaluated Chinese regions, which coupled multi-media transport and human exposure models based on multiple exposure pathways including vegetables consumption, dermal absorption, ingestion of soil and dust, and the exposure from non-soil sources. It is identified that the PAEs in agricultural soil are dominated by DEHP and DnBP representing 72-96% of the total PAEs. The GAC for BBP and DEHP, calculated on the basis of region-specific exposure parameters and soil properties in various locations, are stringent, signifying greater potential health risks from exposure to them, warranting more rigorous contamination management. The proposed soil GAC for plastic debris are 100, 107, 73 and 88 mg kg-1 for Heilongjiang Province, Beijing City, Jiangsu and Guangdong Provinces respectively. Additionally, the potential risks of 1.68 × 10-6 and 7 × 10-6 are identified for BBP and DEHP in Guangdong Province as indicated by the exceedance of target risk level of 1 × 10-6, with the consumption of vegetables being the dominant contributor to the total estimated PAEs exposure. Overall, this methodology based on the coupled contaminant transport and exposure models incorporating region-specific data provides a technical framework to derive science-based soil GAC for representative PAEs for maintaining and assessing soil quality and food safety under the agricultural land use.


Assuntos
Dietilexilftalato , Ácidos Ftálicos , Poluentes do Solo , Humanos , Poluentes do Solo/análise , Ésteres/análise , Ácidos Ftálicos/análise , Solo , Verduras , Medição de Risco , China , Dibutilftalato/análise
9.
J Hazard Mater ; 465: 133186, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38086300

RESUMO

A sensitive, robust, and highly efficient analytical methodology involving solid phase extraction coupled to ultra-high performance liquid chromatography tandem mass spectrometry was successfully established to detect 13 monoalkyl phthalate esters (MPAEs) in aquatic organisms and seawater. After the organisms were preprocessed using enzymatic deconjugation with ß-glucuronidase, extraction, purification, and qualitative and quantitative optimization procedures were performed. Under optimal conditions, the limits of detection varied from 0.07 to 0.88 µg/kg (wet weight) and 0.04-1.96 ng/L in organisms and seawater, respectively. Collectively, MPAEs achieved acceptable recovery values (91.0-102.7%) with relative standard deviations less than 10.4% and matrix effects ranging from 0.93 to 1.07 in the above matrix. Furthermore, MPAEs and phthalate esters were detected by the developed methodology and gas chromatography-triple quadrupole tandem mass spectrometer in practical samples, respectively. Mono-n-butyl phthalate and mono-iso-butyl phthalate were the most predominant congeners, accounting for 24.8-35.2% in aquatic organisms and seawater. Comprehensive health and ecological risks were higher after the MPAEs were incorporated than when phthalate esters were considered separately, and greater than their risk threshold. Therefore, the risks caused by substances and their metabolites in multiple media, with analogous structure-activity relationships, should be considered to ensure the safety of aquatic organisms and consumers.


Assuntos
Ésteres , Ácidos Ftálicos , Cromatografia Gasosa-Espectrometria de Massas , Ésteres/análise , Organismos Aquáticos , Ácidos Ftálicos/análise , Água do Mar/química , Extração em Fase Sólida , Medição de Risco
10.
J Hazard Mater ; 464: 132895, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-37976856

RESUMO

The extensive production and use of phthalates means that these compounds are now ubiquitous in the environment and various biota, which raises concerns about potential harmful health effects. In this study, phthalate metabolites (mPAEs) were measured in breast milk (n = 100) collected from mothers of southern China between 2014 - 2022. Of the nine target mPAEs, five were detected in all of the samples, including mono-methyl phthalate (MMP), mono-ethyl phthalate (MEP), mono-isobutyl phthalate (MiBP), mono-n-butyl phthalate (MnBP), and mono-(2-ethylhexyl) phthalate (MEHP). The total levels of mPAEs in breast milk ranged from 4.76 to 51.6 ng/mL, with MiBP and MnBP being the predominant isomers (MiBP + MnBP > 48.3%). Increasing trends were observed in MMP (5.7%/year) and MEHP (7.1%/year) levels during the study period, while a decreasing trend were observed in MiBP (-6.6%/year); no clear temporal trends were found for the other metabolites and total mPAE levels. The results indicate that exposure to phthalates is still prevalent in southern China. Breastfeeding was found to contribute to estimated daily phthalate intakes of 0.383-6.95 µg/kg-bw/day, suggesting insignificant health risks to infants based on dietary exposure. However, the increasing exposure to MMP and MEHP calls for more research into the possible sources and potential risks.


Assuntos
Poluentes Ambientais , Ácidos Ftálicos , Feminino , Lactente , Humanos , Leite Humano/química , Exposição Ambiental/análise , Poluentes Ambientais/metabolismo , Ácidos Ftálicos/análise , Medição de Risco , China
11.
Environ Pollut ; 342: 123147, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38101532

RESUMO

China is the largest producer and consumer of phthalates in the world. However, it remains unclear whether China's phthalate restrictions have alleviated indoor phthalate pollution. We extracted the concentrations of dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP), diisobutyl phthalate (DIBP), benzyl butyl phthalate (BBP), and bis(2-ethylhexyl) phthalate (DEHP) in indoor dust at 2762 sites throughout China between 2007 and 2019 from the published literature. Based on these data, we investigated the effects of phthalate restrictions and environmental factors on the temporal-spatial distribution and sources of phthalates and estimated human exposure and risk of phthalates. The results revealed that the mean concentrations of phthalates in indoor dust throughout China decreased in the following order: DEHP > DBP > DIBP > DMP > DEP > BBP. The concentrations of six phthalates were generally higher in northern and central-western China than in southern regions. BBP and DEHP concentrations decreased by 73.5% and 17.9%, respectively, from 2007 to 2019. Sunshine was a critical environmental factor in reducing phthalate levels in indoor dust. Polyvinyl chloride materials, personal care products, building materials, and furniture were the primary sources of phthalates in indoor dust. The phthalates in indoor dust posed the most significant threat to children and older adults. This study provides a picture of phthalate pollution, thus supporting timely and effective policies and legislation.


Assuntos
Poluição do Ar em Ambientes Fechados , Dietilexilftalato , Ácidos Ftálicos , Criança , Humanos , Idoso , Poeira/análise , Ácidos Ftálicos/análise , Exposição Ambiental/análise , China , Poluição do Ar em Ambientes Fechados/análise
12.
J Hazard Mater ; 465: 133281, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38134688

RESUMO

Degraded mulch pollution is of a great concern for agricultural soils. Although numerous studies have examined this issue from an environmental perspective, there is a lack of research focusing on crop-specific factors such as crop type. This study aimed to explore the correlation between meteorological and crop factors and mulch contamination. The first step was to estimate the amounts of mulch-derived microplastics (MPs) and phthalic acid esters (PAEs) during the rapid expansion period (1993-2012) of mulch usage in China. Subsequently, the Elastic Net (EN) and Random Forest (RF) models were employed to process a dataset that included meteorological, crop, and estimation data. At the national level, the RF model suggested that coldness in fall was crucial for MPs generation, while vegetables acted as a key factor for PAEs release. On a regional scale, the EN results showed that crops like vegetables, cotton, and peanuts remained significantly involved in PAEs contamination. As for MPs generation, coldness prevailed over all regions. Aridity became more critical for southern regions compared to northern regions due to solar radiation. Lastly, each region possessed specific crop types that could potentially influence its MPs contamination levels and provide guidance for developing sustainable ways to manage mulch contamination.


Assuntos
Ácidos Ftálicos , Poluentes do Solo , Ácidos Ftálicos/análise , Plásticos , Poluentes do Solo/análise , Agricultura , Solo , Verduras , Microplásticos , China , Ésteres/análise
13.
Sci Total Environ ; 904: 166972, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37699481

RESUMO

In recent years, the extensive distribution of phthalates (PAEs) in soils has attracted increasing attention. In this study, the concentrations of six types of PAEs were measured in five dissimilar regions of the Yellow River Delta (YRD), and regional differences, pollution characteristics and health risks of PAEs pollution were investigated. The detection rate of PAEs was 100 %, and the concentration range of Σ6PAEs was 0.709-9.565 mg/kg, with an average of 3.258 ± 2.031 mg/kg. There were different spatial distribution differences of PAEs in soils of the YRD, with residential living, chemical industrial, and crop growing areas being the main areas of PAEs distribution. It was worth noting that di (2-ethylhexyl) phthalate (DEHP) and dibutyl phthalate (DBP) are prominent contributors to PAEs in soils of the YRD. Correlation analyses showed that soils physicochemical properties such as SOM, TN and CEC were closely correlated to the transport and transformation of PAEs. Use by petrochemical industries, accumulation of plasticizers, additives (derived from cosmetics, food, pharmaceutical), fertilizers, pesticides, plastics, and atmospheric deposition are the principal sources of PAEs in the YRD. A health risk assessment showed that the health risk caused by non-dietary intake of PAEs was low and considered acceptable. PAEs pollution in the YRD soil is particularly noteworthy, especially for the prevention and control of DEHP and DBP pollution. This study provides basic data for an effective control of soil PAEs pollution in the YRD, which is conducive to the sustainable development of the region.


Assuntos
Dietilexilftalato , Ácidos Ftálicos , Poluentes do Solo , Solo/química , Ácidos Ftálicos/análise , Dietilexilftalato/análise , Rios/química , Poluentes do Solo/análise , Ésteres/análise , Dibutilftalato/análise , Medição de Risco , Verduras , China
14.
PLoS One ; 18(7): e0287504, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37418450

RESUMO

Due to the increasing population of the world, the presence of harmful compounds, especially phthalate esters (PAEs), are one of the important problems of environmental pollution. These compounds are known as carcinogenic compounds and Endocrine-disrupting chemicals (EDCs) for humans. In this study, the occurrence of PAEs and the evaluation of its ecological risks were carried out in the Persian Gulf. Water samples were collected from two industrial sites, a rural site and an urban site. Samples were analyzed using magnetic solid phase extraction (MSPE) and gas chromatography-mass spectrometry (GC/MS) technique to measure seven PAEs including Di(2-ethylhexyl) phthalate (DEHP), butyl benzyl phthalate (BBP), diethyl phthalate (DEP), dibutyl phthalate (DBP), Dimethyl phthalate (DMP), di-n-octyl phthalate (DNOP), and Di-iso-butyl phthalate (DIBP). The BBP was not detected in any of the samples. The total concentration of six PAEs (Σ6PAEs) ranged from 7.23 to 23.7 µg/L, with a mean concentration of 13.7µg/L. The potential ecological risk of each target PAEs was evaluated by using the risk quotient (RQ) method in seawater samples, and the relative results declined in the sequence of DEHP >DIBP > DBP > DEP > DMP in examined water samples. DEHP had a high risk to algae, crustaceans and fish at all sites. While DMP and DEP showed lower risk for all mentioned trophic levels. The results of this study will be helpful for the implementation of effective control measures and remedial strategies for PAEs pollution in the Persian Gulf.


Assuntos
Dietilexilftalato , Ácidos Ftálicos , Humanos , Dietilexilftalato/análise , Oceano Índico , Ésteres , Ácidos Ftálicos/análise , Dibutilftalato , Medição de Risco , Água do Mar , Água/análise , China
15.
J Hazard Mater ; 459: 132093, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37494796

RESUMO

After the COVID-19 outbreak, masks have become an essential part of people lives. Although several studies have been conducted to determine the release of hazardous substances from masks, how their co-presence poses a potential exposure risk to human health remains unexplored. In this study, we quantitatively compared the leaching of substances from six different common types of masks, including phthalate acid esters (PAEs), metals, and microplastics (MPs), and comprehensively evaluated the potential cytotoxicity of different leachates. MPs smaller than 3 µm were quantified by Py-GC-MS, and reusable masks showed greater releasing potentials up to 1504 µg/g. We also detected the prevalence of PAEs in masks, with the highest release reaching 42 µg/g, with dibutyl phthalate (DBP), diisobutyl phthalate (DiBP) and bis (2-ethylhexyl) phthalate (DEHP) being the predominant types. Moreover, the antimicrobial cloth masks released 173.0 µg of Cu or 4.5 µg of Ag, representing 2.7% and 0.04% of the original masks, respectively. Our cell-based assay results demonstrated for the first time that mask leachate induced nuclear condensation with DNA damage, and simultaneously triggered high levels of glutathione and reactive oxidative stress production, which exacerbated mitochondrial fragmentation, eventually leading to cell death. Combined with substance identification and correlation analysis, PAEs were found to be the contributors to cytotoxicity. Masks containing Cu or Ag led to acidification of lysosomes and alkalinization of cells. These results strongly suggested that the levels of PAEs in the production of regulatory masks should be strictly controlled.


Assuntos
COVID-19 , Dietilexilftalato , Ácidos Ftálicos , Humanos , Plásticos , Ésteres/toxicidade , Ésteres/análise , Ácidos Ftálicos/toxicidade , Ácidos Ftálicos/análise , Dibutilftalato/toxicidade , China , Dietilexilftalato/toxicidade
16.
Chemosphere ; 338: 139480, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37453517

RESUMO

In this work, an evaluation of the occurrence of fifteen phthalates, four metabolites and one adipate in different groundwater, seawater and wastewater samples has been carried out due to their relevance on human health as they act as endocrine disruptors. For this purpose, a sustainable, fast and easy-handling vortex-assisted liquid-liquid microextraction method using a natural hydrophobic deep eutectic solvent based on menthol and carvacrol as extraction agent, combined with ultra-high performance liquid chromatography-mass spectrometry technique, has been developed and applied for the first time. An optimization was performed to evaluate four important factors affecting the extraction performance, and an analytical validation was carried out in terms of matrix effect, linearity, extraction efficiency, and sensitivity. Recovery values were obtained in the range 72-119% for all analytes (except for monoethyl phthalate: 61.1-72.3%) with relative standard deviation values lower than 17%. Limits of quantification were found between 0.91 and 8.09 µg L-1. As a result of the assessment of 31 different environmental water samples, monoethyl phthalate, diethyl phthalate, dibutyl phthalate and bis (2-ethylhexyl) phthalate were detected and quantified at different concentrations in the range 2.59-21.17 µg L-1 in 6 samples, and diallyl phthalate, butyl benzyl phthalate, dipentyl phthalate, dicyclohexyl phthalate, dihexyl phthalate and bis (2-ethylhexyl) adipate were detected in 20 more, showing the exposition of the population to these hazardous substances.


Assuntos
Disruptores Endócrinos , Poluentes Ambientais , Ácidos Ftálicos , Humanos , Solventes/química , Solventes Eutéticos Profundos , Disruptores Endócrinos/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Poluentes Ambientais/análise , Ácidos Ftálicos/análise , Água/química , Adipatos/análise
17.
J Agric Food Chem ; 71(16): 6434-6444, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37058117

RESUMO

The phthalate esters (PAEs) have become ubiquitous pollutants. In the present work, we investigated their pollution on teas. Dimethyl phthalate (DMP), diethyl phthalate (DEP), diisobutyl phthalate (DiBP), di-n-butyl phthalate (DBP), and di-(2-ethyl) hexyl phthalate (DEHP) were detected in all fresh tea leaves with DBP being the major congener of PAEs in teas followed by DiBP and DEHP. Seasonal variation, spatial distribution difference, correlationship of environmental factors, and potential health risks of PAEs were analyzed. The PAEs content in one bud and two leaves was lower than that in upper mature leaves in tea plants. The PAEs content in fresh tea leaves was the lowest in spring, while it was high in autumn and winter. The correlation analysis results showed that PAEs had significantly negative correlation with ambient air temperature, while it was positively correlated with the air quality index. PAEs analysis of spring tea in Anhui and Zhejiang provinces further indicated that the factor of provincial regions had little impact on the PAEs pollution level in tea. By contrast, the different environmental areas significantly affected PAE pollution, especially the agricultural areas. The human daily intake-based (13 g/day) risk assessment indicated that both the carcinogenic and non-carcinogenic risks (1.76 × 10-7-6.12 × 10-7) of PAEs via tea consumption were acceptable, with the estrogen equivalence (1.60-6.29 ng E2/kg) being at a medium level. This study provides significant information for pollution control and risk assessment of PAEs in Chinese tea production.


Assuntos
Dietilexilftalato , Ácidos Ftálicos , Humanos , Ésteres/análise , Ácidos Ftálicos/análise , Dibutilftalato/análise , Medição de Risco , Chá , China
18.
Sci Total Environ ; 876: 163094, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-36996992

RESUMO

Food has consistently been shown to be an important source of exposure to environmental pollutants, drawing attention to the health risks of pollutants in marine mammals with high daily food intake. Here, the dietary exposure risks posed to the Indo-Pacific humpback dolphins from the Pearl River Estuary (PRE), China, by fourteen phthalate metabolites (mPAEs) were evaluated for the first time. On the basis of liquid chromatography-mass spectrometry (LC-MS/MS) analysis, the levels of ∑14mPAEs in ten main species of prey fish (n = 120) of dolphins ranged from 103.0 to 444.5 ng/g wet weight (ww), among which Bombay duck contained a significantly higher body burden of ∑14mPAEs than other prey species. Phthalic acid (PA), monooctyl phthalate (MnOP), monononyl phthalate (MNP), monoethyl phthalate (MEP), monoethylhexyl phthalate (MEHP), mono (5-carboxy-2-ethylpentyl) phthalate (MECPP), monobutyl phthalate (MBP), and monoisobutyl phthalate (MiBP) all had a trophic magnification factor (TMF) greater than unity, indicating the biomagnification potential of these mPAEs in the marine ecosystem of the PRE. A dietary exposure assessment based on the adjusted reference dose values of phthalates (PAEs) showed that bis (2-ethylhexyl) phthalate (DEHP) and dibutyl phthalate (DBP) may pose a high (HQ > 1) and medium (0.01 < HQ < 1) risk to the dolphin adults and juveniles, respectively. Our results highlight the potential health risks of mPAEs to marine mammals through dietary routes.


Assuntos
Golfinhos , Poluentes Ambientais , Ácidos Ftálicos , Animais , Exposição Ambiental/análise , Golfinhos/metabolismo , Cromatografia Líquida , Ecossistema , Espectrometria de Massas em Tandem , Ácidos Ftálicos/análise , Poluentes Ambientais/análise , Peixes/metabolismo , Medição de Risco
19.
Molecules ; 28(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36838677

RESUMO

Phthalates are chemicals that are extensively used in the manufacturing of cosmetic products. The occurrence of phthalate esters in personal care products may pose adverse effects on consumers' health. In this work, a simple, fast and reliable GC-MS method was developed and validated for concurrent determination of phthalate esters in fragrances. Simple procedures were employed for sample preparation and clean up. The recoveries achieved were in the range of 94.9% to 105.6% with RSD ≤ 4.06. The detection limits were in the range of 0.0010 to 0.0021 µg/mL. The GC-MS method was utilized to investigate the occurrence of phthalate esters in different brands of perfumes sold in the Saudi Arabian market. Diethyl phthalate was detected in all analyzed samples, with a maximum concentration of 5766 µg/mL, and di (2-ethylhexyl) phthalate was detected in the majority of the analyzed samples (95%), with a mean concentration of 55.9 µg/mL and a highest concentration of 377.7 µg/mL. Additionally, the exposure to phthalate esters due to the consumption of perfumes was investigated among the adult Saudi population for the first time. It was found that the systemic exposure dose, measured at mean concentrations, ranged from 4.59 × 10-4 to 4.29 × 10-2 (mg/kg/day) and from 5.00 × 10-4 to 4.68 × 10-2 (mg/kg/day) for male and female users, respectively. Moreover, the non-carcinogenic risk of the investigated phthalate esters and the carcinogenic risk of DEHP were also evaluated. The non-carcinogenic risk values of the detected phthalate esters were greater than 100, which indicates that exposure to these phthalate esters is unlikely to produce non-carcinogenic health effects to consumers. However, at maximum DEHP concentrations, the carcinogenic risk values were 5.49 × 10-5 for male users and 5.98 × 10-5 for female users, which indicates the possibility of DEHP to pose a carcinogenic health effect if present at high levels. Regular monitoring of undeclared chemicals such as phthalate esters in personal care products marketed in Saudi Arabia is extremely important to ensure consumers' safety. To the best of the authors' knowledge, this is the first study to assess the health risk associated with consumption of perfumes in Saudi Arabia.


Assuntos
Cosméticos , Dietilexilftalato , Perfumes , Ácidos Ftálicos , Feminino , Masculino , Humanos , Cromatografia Gasosa-Espectrometria de Massas , Carcinógenos , Ésteres/análise , Odorantes , Arábia Saudita , Ácidos Ftálicos/análise , Cosméticos/análise
20.
Environ Sci Pollut Res Int ; 30(18): 53077-53088, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36849691

RESUMO

Pregnant women are widely exposed to phthalic acid esters (PAEs) that are commonly used in most aspects of modern life. However, few studies have examined the cumulative exposure of pregnant women to a variety of PAEs derived from the living environmental conditions in China. Therefore, this study aimed to determine the urinary concentrations of nine PAE metabolites in pregnant women, examine the relationship between urinary concentrations and residential characteristics, and conduct a risk assessment analysis. We included 1,888 women who were in their third trimester of pregnancy, and we determined their urinary concentrations of nine PAE metabolites using high-performance gas chromatography-mass spectrometry. The risk assessment of exposure to PAEs was calculated based on the estimated daily intake. A linear regression model was used to analyze the relationship between creatinine-adjusted PAE metabolite concentrations and residential characteristics. The detection rate of five PAE metabolites in the study population was > 90%. Among the PAE metabolites adjusted by creatinine, the urinary metabolite concentration of monobutyl phthalate was found to be the highest. Residential factors, such as housing type, proximity to streets, recent decorations, lack of ventilation in the kitchen, less than equal to three rooms, and the use of coal/kerosene/wood/wheat straw fuels, were all significantly associated with high PAE metabolite concentrations. Due to PAE exposure, ~ 42% (n = 793) of the participants faced potential health risks, particularly attributed to dibutyl phthalate, diisobutyl phthalate, and di(2-ethyl)hexyl phthalate exposure. Living in buildings and using coal/kerosene/wood/wheat straw as domestic fuel can further increase the risks.


Assuntos
Ácidos Ftálicos , Gestantes , Humanos , Feminino , Gravidez , Creatinina/análise , Querosene/análise , Ácidos Ftálicos/análise , Dibutilftalato , China , Medição de Risco , Ésteres , Exposição Ambiental/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA