Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6368, 2024 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493219

RESUMO

Water is a scarce, strategic resource and the most important input for economic development, especially in agricultural countries such as Brazil. Cocoa production is directly related to water availability, and, as climate changes, selecting drought-tolerant genotypes is vital to keep cacao crops sustainable. Here, we evaluated cacao genotypes under irrigated and water-stressed conditions and selected drought-tolerant ones based on nutritional and physiological traits. Thirty-nine genotypes were monitored for three years for agronomic traits and higher fruit yield. After this evaluation, the 18 most promising genotypes were evaluated in a randomized block design, under a 2 (with and without irrigation)  ×  18 (genotypes) factorial arrangement, with three replicates and five plants per plot. We evaluated seven physiological and 11 nutritional traits, selecting genotypes based on the Genotype-by-Trait Biplot approach. Significant effects (p < 0.05) were observed for the nutritional traits N, P, Mg, S, Zn, Cu, Mn and for the physiological traits CO2 assimilation rate (A), stomatal conductance (gs), transpiration (E), intercellular and atmospheric CO2 concentrations (Ci/Ca), intrinsic water use efficiency (A/gs), instantaneous water use efficiency (A/E), and instantaneous carboxylation efficiency (A/Ci), as determined by analysis of variance. The genotype  ×  irrigation treatment interaction was significant (p < 0.05) for the traits A, gs, and E. Genotypes CP 41, CP 43, and CCN 51 exhibited superior performance for both nutritional and physiological traits (A, gs, and E). In the irrigated environment, CP 41 showed superiority in traits such as P, A/E, A/gs, Mn, S, and Zn. Conversely, under non-irrigated conditions, CP 43 exhibited better performance in nutritional properties, specifically Mn, Mg, and Zn. Notably, in both irrigated and non-irrigated environments, CCN 51 excelled in key physiological traits, including A/Ci, A/E, and A/gs. This robust performance across diverse conditions suggests that these three genotypes possess physiological mechanisms to endure water-stressed conditions. Our research can generate valuable insights into these genotypes informing suitable choices for cocoa cultivation, especially in the context of global climate change.


Assuntos
Cacau , Cacau/genética , Dióxido de Carbono , Fenótipo , Genótipo , Água/fisiologia , Desidratação
2.
New Phytol ; 238(2): 529-548, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36650668

RESUMO

Optimality-based models of stomatal conductance unify biophysical and evolutionary constraints and can improve predictions of land-atmosphere carbon and water exchange. Recent models incorporate hydraulic constraints by penalizing excessive stomatal opening in relation to hydraulic damage caused by low water potentials. We used simulation models to test whether penalties based solely on vulnerability curves adequately represent the optimality hypothesis, given that they exclude the effects of kinetic factors on stomatal behavior and integrated carbon balance. To quantify the effects of nonsteady-state phenomena on the landscape of short-term hydraulic risk, we simulated diurnal dynamics of leaf physiology for 10 000 patches of leaf in a canopy and used a ray-tracing model, Helios, to simulate realistic variation in sunfleck dynamics. Our simulations demonstrated that kinetic parameters of leaf physiology and sunfleck properties influence the economic landscape of short-term hydraulic risk, as characterized by the effect of stomatal strategy (gauged by the water potential causing a 50% hydraulic penalty) on both aggregated carbon gain and the aggregated carbon cost of short-term hydraulic risk. Hydraulic penalties in optimization models should be generalized to allow their parameters to account for kinetic factors, in addition to parameters of hydraulic vulnerability.


Assuntos
Folhas de Planta , Estômatos de Plantas , Estômatos de Plantas/fisiologia , Folhas de Planta/fisiologia , Água/fisiologia , Atmosfera , Carbono , Transpiração Vegetal/fisiologia
3.
Tree Physiol ; 43(2): 221-233, 2023 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-36209448

RESUMO

The drought susceptibility of woody saplings may explain their low survival in arid environments. Therefore, it is critical to determine which morphological and physiological traits are more responsive to drought among young plants. This study tested whether plant responses to experimental drought differ between two plant functional groups: the deciduous and evergreen species. We predicted that deciduous species would present a tighter stomatal control under drought, coupled with fast carbon fixation under no stress, tending toward isohydry and faster growth rates than the evergreen species. Using 1-year-old saplings from three evergreen and four deciduous Sonoran Desert tree species, we evaluated their hydraulic and gas exchange traits under three experimental irrigation conditions: high, intermediate and low water availability. We measured CO2 assimilation rates (A), stomatal conductance (gs), the level of iso-anisohydry (as the plant's ability to maintain constant their water potential) and seven morphological and growth-related traits throughout 2 months. Under high water availability, saplings reached their maximum values of A and gs, which were significantly higher for deciduous than evergreen species. Correlations among hydroscape area (HA) and leaf traits positioned species along the iso/anisohydric continuum. Deciduous species presented isohydric characteristics, including low HA, high gs, A and Huber values (HVs), and traits indicative of a faster use of resources, such as low stem-specific density (SSD) and low leaf mass per area (LMA). By contrast, evergreen species showed traits that indicate slow resource use and anisohydric behavior, such as high HA, SSD and LMA, and low gs, A and HVs. Deciduous species drastically reduced gas exchange rates in response to drought, while evergreen maintained low rates independently of drought intensity. Overall, desert saplings showed strategies concordant with the iso-anisohydric continuum and the fast-slow use of resources.


Assuntos
Folhas de Planta , Árvores , Folhas de Planta/fisiologia , Madeira , Plantas , Água/fisiologia , Secas , Hábitos
4.
BMC Plant Biol ; 22(1): 347, 2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842580

RESUMO

BACKGROUND: Paved urban environments can pose great threats to the physiological functioning and ecological services of street trees. In this context, assessment of leaf phenotypic plasticity is crucial for understanding the ecological strategy of tree species under impervious pavements. RESULTS: In this study, we measured a set of leaf economic traits, hydraulic traits of Cinnamomum camphora, and surrounding environmental factors in a street site (the soil was covered by the impervious pavement) and a park site (the soil was covered by grass) in Hefei, eastern China. Compared with the park site, trees in the street site had higher stomatal length (SL), leaf thickness (LT), maximum photochemical quantum yield of photosystem II (Y(II)), and lower stomatal density (SD), specific leaf area (SLA), the leaf water potential at 50% loss of hydraulic conductance (P50), and leaf turgor loss point (TLP). Redundancy analysis showed that air relative humidity and volumetric soil water content caused these traits to be altered. CONCLUSIONS: Our results showed that C. camphora adapted to the street pavement environment through the coordination of leaf economic and leaf hydraulic traits, and adopted the slow investment return type in the leaf economic spectrum and high drought resistance to meet its actual physiological needs. This finding provides a new perspective for understanding the physiological strategies of street trees to adapt to urban pavement environments.


Assuntos
Cinnamomum camphora , Secas , Folhas de Planta/fisiologia , Solo , Árvores/fisiologia , Água/fisiologia
5.
Plant J ; 109(2): 415-431, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34724260

RESUMO

Root architecture can be targeted in breeding programs to develop crops with better capture of water and nutrients. In rich nations, such crops would reduce production costs and environmental pollution and, in developing nations, they would improve food security and economic development. Crops with deeper roots would have better climate resilience while also sequestering atmospheric CO2 . Deeper rooting, which improves water and N capture, is facilitated by steeper root growth angles, fewer axial roots, reduced lateral branching, and anatomical phenotypes that reduce the metabolic cost of root tissue. Mechanical impedance, hypoxia, and Al toxicity are constraints to subsoil exploration. To improve topsoil foraging for P, K, and other shallow resources, shallower root growth angles, more axial roots, and greater lateral branching are beneficial, as are metabolically cheap roots. In high-input systems, parsimonious root phenotypes that focus on water capture may be advantageous. The growing prevalence of Conservation Agriculture is shifting the mechanical impedance characteristics of cultivated soils in ways that may favor plastic root phenotypes capable of exploiting low resistance pathways to the subsoil. Root ideotypes for many low-input systems would not be optimized for any one function, but would be resilient against an array of biotic and abiotic challenges. Root hairs, reduced metabolic cost, and developmental regulation of plasticity may be useful in all environments. The fitness landscape of integrated root phenotypes is large and complex, and hence will benefit from in silico tools. Understanding and harnessing root architecture for crop improvement is a transdisciplinary opportunity to address global challenges.


Assuntos
Carbono/metabolismo , Produtos Agrícolas/anatomia & histologia , Nitrogênio/metabolismo , Fósforo/metabolismo , Raízes de Plantas/anatomia & histologia , Agricultura , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Secas , Fenótipo , Melhoramento Vegetal , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Água/fisiologia
6.
Ann Bot ; 130(3): 345-354, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-34871356

RESUMO

BACKGROUND AND AIMS: We conducted a comprehensive analysis of the functional traits of leaves (leaflets) of cycads. The aim of this study was to clarify the functional divergence between the earlier origin Cycadaceae and the later differentiated Zamiaceae, and the differences in trait associations between cycads and angiosperms. METHODS: We selected 20 Cycadaceae species and 21 Zamiaceae species from the same cycad garden in South China, and measured their leaf structure, economic traits, mechanical resistance (Fp) and leaf water potential at the turgor loss point (πtlp). In addition, we compiled a dataset of geographical distribution along with climatic variables for these cycad species, and some leaf traits of tropical-sub-tropical angiosperm woody species from the literature for comparison. KEY RESULTS: The results showed significantly contrasting leaf trait syndromes between the two families, with Zamiaceae species exhibiting thicker leaves, higher carbon investments and greater Fp than Cycadaceae species. Leaf thickness (LT) and πtlp were correlated with mean climatic variables in their native distribution ranges, indicating their evolutionary adaptation to environmental conditions. Compared with the leaves of angiosperms, the cycad leaves were thicker and tougher, and more tolerant to desiccation. Greater Fp was associated with a higher structural investment in both angiosperms and cycads; however, cycads showed lower Fp at a given leaf mass per area or LT than angiosperms. Enhancement of Fp led to more negative πtlp in angiosperms, but the opposite trend was observed in cycads. CONCLUSIONS: Our results reveal that variations in leaf traits of cycads are mainly influenced by taxonomy and the environment of their native range. We also demonstrate similar leaf functional associations in terms of economics, but different relationships with regard to mechanics and drought tolerance between cycads and angiosperms. This study expands our understanding of the ecological strategies and likely responses of cycads to future climate change.


Assuntos
Magnoliopsida , Zamiaceae , Carbono , Cycadopsida , Secas , Magnoliopsida/fisiologia , Folhas de Planta/fisiologia , Água/fisiologia
7.
J Phys Act Health ; 17(2): 156-161, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31810065

RESUMO

BACKGROUND: To compare the acute effects of water-based aerobic-resistance and resistance-aerobic concurrent training (CT) sessions on energy expenditure (EE) during and postexercise in young women. METHODS: Nine active women (24 [3] y; 60 [5] kg) completed 4 sessions: (1) familiarization, (2) aquatic maximal test to determine the heart rate corresponding to the anaerobic threshold, (3) CT protocol with aerobic-resistance sequence, and (4) CT protocol with resistance-aerobic sequence. Both protocols started and ended with the participants in the supine position for 30 minutes to perform resting and postexercise oxygen consumption measurements. The water-based resistance protocol comprised 4 sets of 15 seconds at maximal velocity, and the water-based aerobic protocol was performed at a continuous intensity (heart rate corresponding to the anaerobic threshold). EE measurements were calculated based on oxygen consumption and the corresponding caloric equivalent. Paired t test was used to compare the EE values between the water-based CT intrasession exercise sequences (α = .05). RESULTS: There was no difference between the water-based aerobic-resistance and resistance-aerobic in total EE (330.78 vs 329.56 kcal; P = .96), EE per minute (7.35 vs 7.32 kcal·min-1; P = .96), and postexercise EE (63.65 vs 59.92 kcal; P = .50). CONCLUSIONS: The intrasession exercise sequence during water-based CT had no influence on the EE in young women.


Assuntos
Metabolismo Energético/fisiologia , Exercício Físico/fisiologia , Água/fisiologia , Adolescente , Adulto , Feminino , Humanos , Adulto Jovem
8.
J Sports Med Phys Fitness ; 59(7): 1238-1243, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30722649

RESUMO

BACKGROUND: Exposure to cold is associated with increased energy expenditure to maintain thermal equilibrium. The Cool Fat Burner vest and Gut Buster are chilling devices used to induce shivering and increase calorie use. Drinking chilled water has a similar effect. METHODS: Indirect calorimetry was performed on volunteers at rest with induced shivering. Eight men and 6 women with a mean age of 32.14+7.26 years were evaluated while wearing the Cool Fat Burner Vest and Gut Buster and drinking chilled water. RESULTS: Use of the chilling devices was associated with a significant increase in VO2, VT, VE, R, and EE. An over 20% increase in fat use as a fuel source was observed along with a 67% increase in EE. The energy expenditure during the final 30 minutes of shiver chilling was 74.6% above that of the RMR. Chilling induced significant increases in energy expenditure associated with a shift in energy source towards more fat tissue use. CONCLUSIONS: Indirect calorimetry evaluation of overweight subjects wearing a Cool Fat Burner vest and Gut Buster and drinking chilled water demonstrated significant increases in oxygen uptake and energy expenditure, and a shift in fuel utilization towards fat as the substrate of choice.


Assuntos
Temperatura Baixa , Metabolismo Energético/fisiologia , Metabolismo dos Lipídeos/fisiologia , Sobrepeso/metabolismo , Adulto , Composição Corporal , Calorimetria Indireta , Ingestão de Líquidos , Feminino , Humanos , Masculino , Roupa de Proteção , Água/fisiologia
9.
Am Nat ; 193(1): 51-58, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30624109

RESUMO

Geographical gradients of body size express climate-driven constraints on animals, but whether they exist and what causes them in ectotherms remains contentious. For amphibians, the water conservation hypothesis posits that larger bodies reduce evaporative water loss (EWL) along dehydrating gradients. To address this hypothesis mechanistically, we build on well-established biophysical equations of water exchange in anurans to propose a state-transition model that predicts an increase of either body size or resistance to EWL as alternative specialization along dehydrating gradients. The model predicts that species whose water economy is more sensitive to variation in body size than to variation in resistance to EWL should increase in size in response to increasing potential evapotranspiration (PET). To evaluate the model predictions, we combine physiological measurements of resistance to EWL with geographic data of body size for four different anuran species. Only one species, Dendropsophus minutus, was predicted to exhibit a positive body size-PET relationship. Results were as predicted for all cases, with one species-Boana faber-showing a negative relationship. Based on an empirically verified mathematical model, we show that clines of body size among anurans depend on the current values of those traits and emerge as an advantage for water conservation. Our model offers a mechanistic and compelling explanation for the cause and variation of gradients of body size in anurans.


Assuntos
Anuros/fisiologia , Tamanho Corporal , Modelos Biológicos , Água/fisiologia , Animais , Brasil , Masculino
10.
Int J Sport Nutr Exerc Metab ; 29(4): 350­353, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30299186

RESUMO

Prior studies have examined offshore sailing and energy strategies using accurate total energy expenditure (TEE) measurement in free-living conditions. However, no research has studied energy and water requirement during dinghy class sailing such as an Olympic event with concentrated training. This study aimed to investigate the TEE, physical activity level (PAL), and water turnover (rH2O) of collegiate dinghy sailors in a training camp using the doubly labeled water (DLW) method. Eleven dinghy sailing collegiate athletes (9 males and 2 females) participated. The DLW method was used to determine the participants' TEE and PAL over 8 days (6 training, 2 non-training days). Participants trained approximately 7 h/day on water. Body fat was measured using a stable-isotope dilution method. The rH2O was estimated using deuterium turnover. The mean TEE, PAL, and rH2O were 17.30 ± 4.22 MJ/day (4133 ± 1009 kcal/day), 2.8 ± 0.3 (range, 2.1 to 4.1), and 3.3±0.7 (range, 2.6 to 4.5) L/day, respectively. To our knowledge, this was the first study to use the DLW method to determine TEE, PAL, and rH2O as references for competitive dinghy sailors in a spring training camp. Our results may serve as a reference to assist competitive dinghy sailors in determining their required nutritional support.


Assuntos
Óxido de Deutério/análise , Metabolismo Energético , Exercício Físico , Esportes Aquáticos , Água/fisiologia , Atletas , Feminino , Humanos , Masculino , Adulto Jovem
11.
Tree Physiol ; 38(5): 658-663, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29474684

RESUMO

Leaf turgor loss point (πtlp) indicates the capacity of a plant to maintain cell turgor pressure during dehydration, which has been proven to be strongly predictive of the plant response to drought. In this study, we compiled a data set of πtlp for 1752 woody plant individuals belonging to 389 species from nine major woody biomes in China, along with reduced sample size of hydraulic and leaf carbon economics data. We aimed to investigate the variation of πtlp across biomes varying in water availability. We also tested two hypotheses: (i) πtlp predicts leaf hydraulic safety margins and (ii) it is correlated with leaf carbon economics traits. Our results showed that there was a positive relationship between πtlp and aridity index: biomes from humid regions had less negative values than those from arid regions. This supports the idea that πtlp may reflect drought tolerance at the scale of woody biomes. As expected, πtlp was significantly positively correlated with leaf hydraulic safety margins that varied significantly across biomes, indicating that this trait may be useful in modelling changes of forest components in response to increasing drought. Moreover, πtlp was correlated with a suite of coordinated hydraulic and economics traits; therefore, it can be used to predict the position of a given species along the 'fast-slow' whole-plant economics spectrum. This study expands our understanding of the biological significance of πtlp not only in drought tolerance, but also in the plant economics spectrum.


Assuntos
Carbono/metabolismo , Secas , Folhas de Planta/fisiologia , Fenômenos Fisiológicos Vegetais , Água/fisiologia , China , Pressão
12.
Plant Cell Environ ; 41(1): 64-78, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28346742

RESUMO

Leaf economic and hydraulic theories have rarely been applied to the ecological differentiation of speciose herbaceous plant radiations. The role of character trait divergences and network reorganization in the differentiation of the functional types in the megadiverse Neotropical Bromeliaceae was explored by quantifying a range of leaf economic and hydraulic traits in 50 diverse species. Functional types, which are defined by combinations of C3 or Crassulacean acid metabolism (CAM) photosynthesis, terrestrial or epiphytic habits, and non-specialized, tank-forming or atmospheric morphologies, segregated clearly in trait space. Most classical leaf economic relationships were supported, but they were weakened by the presence of succulence. Functional types differed in trait-network architecture, suggesting that rewiring of trait-networks caused by innovations in habit and photosynthetic pathway is an important aspect of ecological differentiation. The hydraulic data supported the coupling of leaf hydraulics and gas exchange, but not the hydraulic safety versus efficiency hypothesis, and hinted at an important role for the extra-xylary compartment in the control of bromeliad leaf hydraulics. Overall, our findings highlight the fundamental importance of structure-function relationships in the generation and maintenance of ecological diversity.


Assuntos
Bromeliaceae/fisiologia , Fenômenos Ecológicos e Ambientais , Água/fisiologia , Bromeliaceae/anatomia & histologia , Clima , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Análise de Componente Principal , Característica Quantitativa Herdável , Especificidade da Espécie
13.
Sci Total Environ ; 621: 245-252, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29182967

RESUMO

Leaf economics and hydraulic traits are simultaneously involved in the process of trading water for CO2, but the relationships between these two suites of traits remain ambiguous. Recently, Li et al. (2015) reported that leaf economics and hydraulic traits were decoupled in five tropical-subtropical forests in China. We tested the hypothesis that the relationships between economics and hydraulic traits may depend on water availability. We analysed five leaf economics traits, four hydraulic traits and anatomical structures of 47 woody species on the Loess Plateau with poor water availability and compared those data with Li et al. (2015) obtained in tropical-subtropical regions with adequate water. The results showed that plants on the Loess Plateau tend to have higher leaf tissue density (TD), leaf nitrogen concentrations and venation density (VD) and lower stomatal guard cell length (SL) and maximum stomatal conductance to water vapour (gwmax). VD showed positive correlations with leaf nitrogen concentrations, palisade tissue thickness (PT) and ratio of palisade tissue thickness to spongy tissue thickness (PT/ST). Principal component analysis (PCA) showed a result opposite from those of tropical-subtropical regions: leaf economics and hydraulic traits were coupled on the Loess Plateau. A stable correlation between these two suites of traits may be more cost-effective on the Loess Plateau, where water availability is poor. The correlation of leaf economics and hydraulic traits may be a type of adaptation mechanism in arid conditions.


Assuntos
Florestas , Folhas de Planta/fisiologia , Árvores/fisiologia , Água/fisiologia , China
14.
Tree Physiol ; 38(4): 517-530, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29087514

RESUMO

Tree species in tropical dry forests employ a wide range of strategies to cope with seasonal drought, including regulation of hydraulic function. However, it is uncertain if co-occurring lianas also possess a diversity of strategies. For a taxonomically diverse group of 14 tree and 7 liana species, we measured morphological and hydraulic functional traits during an unusual drought and under non-drought conditions to determine (i) if trees have different water-use strategies than lianas and (ii) if relationships among these traits can be used to better understand how tree and liana species regulate diurnal leaf water potential (Ψdiurnal). In this Costa Rican tropical dry forest, lianas and trees had overlapping water-use strategies, but differed in many leaf economic spectrum traits. Specifically, we found that both lianas and trees employed a diversity of Ψdiurnal regulation strategies, which did not differ statistically. However, lianas and trees did significantly differ in terms of certain traits including leaf area, specific leaf area, petiole length, wood vessel diameter and xylem vessel density. All liana and tree species we measured fell along a continuum of isohydric (partial) to anisohydric (strict or extreme) Ψdiurnal regulation strategies, and leaf area, petiole length, stomatal conductance and wood vessel diameter correlated with these strategies. These findings contribute to a trait-based understanding of how plants regulate Ψdiurnal under both drought stress and sufficient water availability, and underscore that lianas and trees employ a similarly wide range of Ψdiurnal regulation strategies, despite having vastly different growth forms.


Assuntos
Folhas de Planta/fisiologia , Árvores/fisiologia , Água/fisiologia , Costa Rica
15.
Sci Rep ; 7(1): 3260, 2017 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-28607420

RESUMO

Yield-phenology relation is a critical issue affecting rainfed maize field productivity in semiarid east African Plateau (EAP). We first introduced Chinese ridge-furrow mulching (RFM) system to EAP, using three maize cultivars with early-, mid- and late-maturing traits as test materials. A two-year field experiment was conducted in a semiarid farm of Kenya from 2012 to 2013. Three treatments were designed: alternative ridge and furrow with transparent plastic mulching (FT), with black plastic mulching (FB) and without mulching (CK). We found that FT and FB significantly increased soil moisture and accelerated crop maturity across two growing seasons. Leaf area and shoot biomass were increased by 30.2% and 67.5% in FT, 35.2% and 73.5% in FB, respectively, compared with CK. Grain yield, water use efficiency and economic output were increased by 55.6%, 57.5% and 26.7% in FT, and 50.8%, 53.3% and 19.8% in FB, respectively. Optimal yield and economic benefit were observed in late-maturing cultivar due to increased topsoil temperature in FT in 2012 (cool), and in early-maturing cultivar owing to cooling effect in FB in 2013 (warm). Our study suggested RFM system, combined with crop phenology selection, be a promising strategy to boost maize productivity and profitability in semiarid EAP.


Assuntos
Produção Agrícola/métodos , Água/fisiologia , Zea mays/fisiologia , Produção Agrícola/economia , Quênia , Folhas de Planta/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Estações do Ano , Solo , Temperatura , Zea mays/crescimento & desenvolvimento
16.
Plant Cell Environ ; 40(2): 203-215, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27861995

RESUMO

Stomata represent one resistor in a series of resistances for carbon and water exchange between the leaf and the atmosphere; the remaining resistors occurring within the leaf, commonly represented as mesophyll conductance to CO2 , gm , and leaf hydraulic conductance, kLeaf . Recent studies have proposed that gm and kLeaf may be coordinated across species because of shared pathways. We assessed the correlation between gm and kLeaf within cotton, under growth CO2 partial pressure and irradiance treatments and also with short-term variation in irradiance and humidity. gm was estimated using two isotopic techniques that allowed partitioning of total gm (Δ13 C-gm ) into cell wall plus plasma membrane conductance (Δ18 O-gm ) and chloroplast membrane conductance (gcm ). A weak correlation was found between Δ13 C-gm and kLeaf only when measured under growth conditions. However, Δ18 O-gm was related to kLeaf under both short-term environmental variation and growth conditions. Partitioning gm showed that gcm was not affected by short-term changes in irradiance or correlated with kLeaf , but was strongly reduced at high growth CO2 partial pressure. Thus, simultaneous measurements of gm , kLeaf and gcm suggest independent regulation of carbon and water transport across the chloroplast membrane with limited coordinated regulation across the cell wall and plasma membrane.


Assuntos
Células do Mesofilo/fisiologia , Folhas de Planta/fisiologia , Água/fisiologia , Dióxido de Carbono/farmacologia , Isótopos de Carbono , Difusão , Gossypium/anatomia & histologia , Gossypium/efeitos dos fármacos , Gossypium/crescimento & desenvolvimento , Luz , Células do Mesofilo/efeitos dos fármacos , Método de Monte Carlo , Folhas de Planta/anatomia & histologia , Folhas de Planta/efeitos dos fármacos , Especificidade da Espécie
17.
Ann Bot ; 118(3): 541-53, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27443298

RESUMO

BACKGROUND AND AIMS: In arid environments, a high nitrogen content per leaf area (Narea) induced by drought can enhance water use efficiency (WUE) of photosynthesis, but may also lead to high leaf construction cost (CC). Our aim was to investigate how maximizing Narea could balance WUE and CC in an arid-adapted, widespread species along a rainfall gradient, and how such a process may be related to the drought threshold of the desert-steppe ecotone in northern China. METHODS: Along rainfall gradients with a moisture index (MI) of 0·17-0·41 in northern China and the northern Tibetan Plateau, we measured leaf traits and stand variables including specific leaf area (SLA), nitrogen content relative to leaf mass and area (Nmass, Narea) and construction cost (CCmass, CCarea), δ(13)C (indicator of WUE), leaf area index (LAI) and foliage N-pool across populations of Artemisia ordosica KEY RESULTS: In samples from northern China, a continuous increase of Narea with decreasing MI was achieved by a higher Nmass and constant SLA (reduced LAI and constant N-pool) in high-rainfall areas (MI > 0·29), but by a lower SLA and Nmass (reduced LAI and N-pool) in low-rainfall areas (MI ≤ 0·29). While δ(13)C, CCmass and CCarea continuously increased with decreasing MI, the low-rainfall group had higher Narea and δ(13)C at a given CCarea, compared with the high-rainfall group. Similar patterns were also found in additional data for the same species in the northern Tibetan Plateau. The observed drought threshold where MI = 0·29 corresponded well to the zonal boundary between typical and desert steppes in northern China. CONCLUSIONS: Our data indicated that below a climatic drought threshold, drought-resistant plants tend to maximize their intrinsic WUE through increased Narea at a given CCarea, which suggests a linkage between leaf functional traits and arid vegetation zonation.


Assuntos
Artemisia/fisiologia , Nitrogênio/metabolismo , Fotossíntese/fisiologia , Água/fisiologia , China , Secas , Meio Ambiente , Folhas de Planta/fisiologia
18.
Ecol Lett ; 18(9): 899-906, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26108338

RESUMO

Leaf economics and hydraulic traits are critical to leaf photosynthesis, yet it is debated whether these two sets of traits vary in a fully coordinated manner or there is room for independent variation. Here, we tested the relationship between leaf economics traits, including leaf nitrogen concentration and leaf dry mass per area, and leaf hydraulic traits including stomatal density and vein density in five tropical-subtropical forests. Surprisingly, these two suites of traits were statistically decoupled. This decoupling suggests that independent trait dimensions exist within a leaf, with leaf economics dimension corresponding to light capture and tissue longevity, and the hydraulic dimension to water-use and leaf temperature maintenance. Clearly, leaf economics and hydraulic traits can vary independently, thus allowing for more possible plant trait combinations. Compared with a single trait dimension, multiple trait dimensions may better enable species adaptations to multifarious niche dimensions, promote diverse plant strategies and facilitate species coexistence.


Assuntos
Florestas , Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia , Transpiração Vegetal , China , Magnoliopsida/fisiologia , Nitrogênio/química , Fotossíntese , Filogenia , Folhas de Planta/anatomia & histologia , Clima Tropical , Água/fisiologia
19.
Tree Physiol ; 34(11): 1149-66, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25542897

RESUMO

Tree breeding and biotechnology can enhance forest productivity and help alleviate the rising pressure on forests from climate change and human exploitation. While many physiological processes and genes are targeted in search of genetically improved tree productivity, an overarching principle to guide this search is missing. Here, we propose a method to identify the traits that can be modified to enhance productivity, based on the differences between trees shaped by natural selection and 'improved' trees with traits optimized for productivity. We developed a tractable model of plant growth and survival to explore such potential modifications under a range of environmental conditions, from non-water limited to severely drought-limited sites. We show how key traits are controlled by a trade-off between productivity and survival, and that productivity can be increased at the expense of long-term survival by reducing isohydric behavior (stomatal regulation of leaf water potential) and allocation to defense against pests compared with native trees. In contrast, at dry sites occupied by naturally drought-resistant trees, the model suggests a better strategy may be to select trees with slightly lower wood density than the native trees and to augment isohydric behavior and allocation to defense. Thus, which traits to modify, and in which direction, depend on the original tree species or genotype, the growth environment and wood-quality versus volume production preferences. In contrast to this need for customization of drought and pest resistances, consistent large gains in productivity for all genotypes can be obtained if root traits can be altered to reduce competition for water and nutrients. Our approach illustrates the potential of using eco-evolutionary theory and modeling to guide plant breeding and genetic technology in selecting target traits in the quest for higher forest productivity.


Assuntos
Modelos Teóricos , Árvores/genética , Evolução Biológica , Biomassa , Biotecnologia , Cruzamento , Clima , Secas , Meio Ambiente , Fenótipo , Transpiração Vegetal , Gestão de Riscos , Árvores/crescimento & desenvolvimento , Árvores/fisiologia , Água/fisiologia , Madeira
20.
J Plant Physiol ; 171(10): 799-806, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24877671

RESUMO

Development and evaluation of a real-time plant water stress sensor, based on the electrophysiological behavior of fruit-bearing woody plants is presented. Continuous electric potentials are measured in tree trunks for different irrigation schedules, inducing variable water stress conditions; results are discussed in relation to soil water content and micro-atmospheric evaporative demand, determined continuously by conventional sensors, correlating this information with tree electric potential measurements. Systematic and differentiable patterns of electric potentials for water-stressed and no-stressed trees in 2 fruit species are presented. Early detection and recovery dynamics of water stress conditions can also be monitored with these electrophysiology sensors, which enable continuous and non-destructive measurements for efficient irrigation scheduling throughout the year. The experiment is developed under controlled conditions, in Faraday cages located at a greenhouse area, both in Persea americana and Prunus domestica plants. Soil moisture evolution is controlled using capacitance sensors and solar radiation, temperature, relative humidity, wind intensity and direction are continuously registered with accurate weather sensors, in a micro-agrometeorological automatic station located at the experimental site. The electrophysiological sensor has two stainless steel electrodes (measuring/reference), inserted on the stem; a high precision Keithley 2701 digital multimeter is used to measure plant electrical signals; an algorithm written in MatLab(®), allows correlating the signal to environmental variables. An electric cyclic behavior is observed (circadian cycle) in the experimental plants. For non-irrigated plants, the electrical signal shows a time positive slope and then, a negative slope after restarting irrigation throughout a rather extended recovery process, before reaching a stable electrical signal with zero slope. Well-watered plants presented a continuous signal with daily maximum and a minimum EP of similar magnitude in time, with zero slope. This plant electrical behavior is proposed for the development of a sensor measuring real-time plant water status.


Assuntos
Ritmo Circadiano/fisiologia , Persea/fisiologia , Prunus/fisiologia , Transdução de Sinais/fisiologia , Água/fisiologia , Desidratação , Fenômenos Eletrofisiológicos , Meio Ambiente , Luz , Persea/efeitos da radiação , Caules de Planta/fisiologia , Caules de Planta/efeitos da radiação , Prunus/efeitos da radiação , Solo , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA