Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Microb Cell Fact ; 23(1): 187, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951813

RESUMO

BACKGROUND: Plastic is widely utilized in packaging, frameworks, and as coverings material. Its overconsumption and slow degradation, pose threats to ecosystems due to its toxic effects. While polyhydroxyalkanoates (PHA) offer a sustainable alternative to petroleum-based plastics, their production costs present significant obstacles to global adoption. On the other side, a multitude of household and industrial activities generate substantial volumes of wastewater containing both organic and inorganic contaminants. This not only poses a threat to ecosystems but also presents opportunities to get benefits from the circular economy. Production of bioplastics may be improved by using the nutrients and minerals in wastewater as a feedstock for microbial fermentation. Strategies like feast-famine culture, mixed-consortia culture, and integrated processes have been developed for PHA production from highly polluted wastewater with high organic loads. Various process parameters like organic loading rate, organic content (volatile fatty acids), dissolved oxygen, operating pH, and temperature also have critical roles in PHA accumulation in microbial biomass. Research advances are also going on in downstream and recovery of PHA utilizing a combination of physical and chemical (halogenated solvents, surfactants, green solvents) methods. This review highlights recent developments in upcycling wastewater resources into PHA, encompassing various production strategies, downstream processing methodologies, and techno-economic analyses. SHORT CONCLUSION: Organic carbon and nitrogen present in wastewater offer a promising, cost-effective source for producing bioplastic. Previous attempts have focused on enhancing productivity through optimizing culture systems and growth conditions. However, despite technological progress, significant challenges persist, such as low productivity, intricate downstream processing, scalability issues, and the properties of resulting PHA.


Assuntos
Poli-Hidroxialcanoatos , Águas Residuárias , Poli-Hidroxialcanoatos/biossíntese , Poli-Hidroxialcanoatos/metabolismo , Águas Residuárias/microbiologia , Águas Residuárias/química , Fermentação , Bactérias/metabolismo , Biodegradação Ambiental
2.
Arch Microbiol ; 206(7): 296, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856816

RESUMO

Environmental contamination from petroleum refinery operations has increased due to the rapid population growth and modernization of society, necessitating urgent repair. Microbial remediation of petroleum wastewater by prominent bacterial cultures holds promise in circumventing the issue of petroleum-related pollution. Herein, the bacterial culture was isolated from petroleum-contaminated sludge samples for the valorization of polyaromatic hydrocarbons and biodegradation of petroleum wastewater samples. The bacterial strain was screened and identified as Bacillus subtilis IH-1. After six days of incubation, the bacteria had degraded 25.9% of phenanthrene and 20.3% of naphthalene. The treatment of wastewater samples was assessed using physico-chemical and Fourier-transform infrared spectroscopy analysis, which revealed that the level of pollutants was elevated and above the allowed limits. Following bacterial degradation, the reduction in pollution parameters viz. EC (82.7%), BOD (87.0%), COD (80.0%), total phenols (96.3%), oil and grease (79.7%), TKN (68.8%), TOC (96.3%) and TPH (52.4%) were observed. The reduction in pH and heavy metals were also observed after bacterial treatment. V. mungo was used in the phytotoxicity test, which revealed at 50% wastewater concentration the reduction in biomass (30.3%), root length (87.7%), shoot length (93.9%), and seed germination (30.0%) was observed in comparison to control. When A. cepa root tips immersed in varying concentrations of wastewater samples, the mitotic index significantly decreased, suggesting the induction of cytotoxicity. However, following the bacterial treatment, there was a noticeable decrease in phytotoxicity and cytotoxicity. The bacterial culture produces lignin peroxidase enzyme and has the potential to degrade the toxic pollutants of petroleum wastewater. Therefore the bacterium may be immobilised or directly used at reactor scale or pilot scale study to benefit the industry and environmental safety.


Assuntos
Bacillus subtilis , Biodegradação Ambiental , Petróleo , Águas Residuárias , Bacillus subtilis/metabolismo , Bacillus subtilis/crescimento & desenvolvimento , Águas Residuárias/microbiologia , Águas Residuárias/química , Petróleo/metabolismo , Petróleo/toxicidade , Fenantrenos/metabolismo , Fenantrenos/análise , Fenantrenos/toxicidade , Naftalenos/metabolismo , Naftalenos/toxicidade , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Esgotos/microbiologia , Metais Pesados/metabolismo , Metais Pesados/toxicidade , Metais Pesados/análise
3.
Hum Genomics ; 18(1): 54, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816866

RESUMO

This study evaluated ten nucleic acid extraction protocols (EP1 to EP10) for measuring five endogenous antibiotic resistance genes (ARGs) in four aircraft wastewater samples (AWW1 to AWW4). The targeted ARGs, including blaCTX-M, blaNDM-1, ermB, qnrS, and tetA, encompassed highly and minimally abundant ARGs. TetA and ermB were consistently detected across four aircraft wastewater samples using the DNeasy Blood and Tissue Kit and the AllPrep PowerViral DNA/RNA kit. QnrS displayed high detection rates with specific extraction protocols and aliquot volumes. Concentrations of ARGs varied across aircraft wastewater samples, with differing extraction protocols influencing quantitative results. The concentrations of tetA, ermB, and qnrS in AWW1 were distinct, while AWW2 to AWW4 exhibited a broader range for tetA, ermB, qnrS, blaCTX-M, and blaNDM-1. EP1 consistently produced the highest concentrations for several ARGs. Collective data analysis revealed varying ARG concentrations across the ten extraction protocols, suggesting the importance of careful extraction protocol selection in ARG monitoring in aircraft wastewater samples. Based on the results, we suggest that a small sample volume (as low as 0.2 mL) may be sufficient for ARG characterization in aircraft wastewater samples. The findings also emphasize the need for considering toilet paper removal without compromising nucleic acid extraction efficiency. The study highlights promising prospects for aircraft wastewater monitoring of ARGs, calling for further investigation into the import and spread of unique ARGs through transport hubs.


Assuntos
Aeronaves , Águas Residuárias , Águas Residuárias/microbiologia , Genes Bacterianos , Resistência Microbiana a Medicamentos/genética , Humanos , Ácidos Nucleicos/genética , Ácidos Nucleicos/isolamento & purificação , Farmacorresistência Bacteriana/genética , Antibacterianos
4.
Sci Total Environ ; 934: 173096, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38729365

RESUMO

Bioaerosols released from municipal wastewater treatment plants (MWWTPs) contain pathogenic microorganisms, if dispersed into the atmosphere, which pose potential health risks to humans. In this study, the concentrations and size distribution of bioaerosol, factors on the bioaerosol emission, exposure risk, and microbial composition in different treatment units of a MWWTP were investigated. The results showed that bioaerosol was released to different degrees in each treatment unit, with the concentrations of bioaerosol varied widely, ranging from 978 to 3710 CFU/m3. FG and PST were primary bioaerosol emission sources in MWWTP. COD concentration, wind speed (WS) and relative humidity (RH) significantly influenced bioaerosol concentrations. The proportion of inhalable particles (< 4.7 µm) ranged from 51.35 % to 83.33 %, and bioaerosol emitted from WWTP caused a non-carcinogenic risk to children by the exposure risk assessment (HI > 1), which need to be paid more attention. Bacterial, fungal and actinomycete aerosols were detected in each treatment unit of MWWTP. Among these bioaerosols, bacterial aerosol was dominant. Importantly, several pathogenic bacteria including Sphingobium, Brevundimonas, Romboutsia, Arcobacter, Acinetobacter, and Mycobacterium were identified within the airborne bacteria population, most of which originated from wastewater or sludge, particularly in the ambient air of AeT. Pathogenic bacteria from MWWTP should be studied further to determine their long-term behavior and possible health risks.


Assuntos
Aerossóis , Microbiologia do Ar , Poluentes Atmosféricos , Monitoramento Ambiental , Eliminação de Resíduos Líquidos , Águas Residuárias , Aerossóis/análise , Medição de Risco , Águas Residuárias/microbiologia , Poluentes Atmosféricos/análise , Bactérias/isolamento & purificação , Humanos
5.
PLoS One ; 19(5): e0304113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38820335

RESUMO

Microbial degradation of tylosin (TYL) is a safe and environmentally friendly technology for remediating environmental pollution. Kurthia gibsonii (TYL-A1) and Klebsiella pneumonia (TYL-B2) were isolated from wastewater; degradation efficiency of the two strains combined was significantly greater than either alone and resulted in degradation products that were less toxic than TYL. With Polyvinyl alcohol (PVA)-sodium alginate (SA)-activated carbon (AC) used to form a bacterial immobilization carrier, the immobilized bacterial alliance reached 95.9% degradation efficiency in 1 d and could be reused for four cycles, with > 93% degradation efficiency per cycle. In a wastewater application, the immobilized bacterial alliance degraded 67.0% TYL in 9 d. There were significant advantages for the immobilized bacterial alliance at pH 5 or 9, with 20 or 40 g/L NaCl, or with 10 or 50 mg/L doxycycline. In summary, in this study, a bacterial consortium with TYL degradation ability was constructed using PVA-SA-AC as an immobilized carrier, and the application effect was evaluated on farm wastewater with a view to providing application guidance in environmental remediation.


Assuntos
Biodegradação Ambiental , Células Imobilizadas , Álcool de Polivinil , Tilosina , Águas Residuárias , Águas Residuárias/química , Águas Residuárias/microbiologia , Álcool de Polivinil/química , Células Imobilizadas/metabolismo , Alginatos/química , Alginatos/metabolismo , Poluentes Químicos da Água/metabolismo , Klebsiella pneumoniae/metabolismo , Antibacterianos , Carvão Vegetal/química
6.
J Water Health ; 22(4): 652-672, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38678420

RESUMO

A new type of bio-composite material is being produced from water-recovered resources such as cellulose fibres from wastewater, calcite from the drinking water softening process, and grass and reed from waterboard sites. These raw materials may be contaminated with pathogens and chemicals such as Escherichia coli, heavy metals, and resin compounds. A novel risk assessment framework is proposed here, addressing human health risks during the production of new bio-composite materials. The developed framework consists of a combination of existing risk assessment methods and is based on three main steps: hazard identification, qualitative risk mapping, and quantitative risk assessment. The HAZOP and Event Tree Analysis methodologies were used for hazard identification and risk mapping stages. Then, human health risks were quantitatively assessed using quantitative chemical risk assessment, evaluating cancer and non-cancer risk, and quantitative microbial risk assessment. The deterministic and the stochastic approaches were performed for this purpose. The contamination of raw materials may pose human health concerns, resulting in cancer risk above the threshold. Microbial risk is also above the safety threshold. Additional analysis would be significant as future research to better assess the microbial risk in biocomposite production. The framework has been effectively used for chemical and microbial risk assessment.


Assuntos
Recursos Hídricos , Medição de Risco , Humanos , Águas Residuárias/análise , Águas Residuárias/química , Águas Residuárias/microbiologia , Poluentes Químicos da Água/análise
7.
Sci Total Environ ; 858(Pt 2): 159833, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36374754

RESUMO

The absence of effective wastewater treatment technology to eliminate emerging pollutants from municipal sewage has become a pressing issue. In this study, the efficacy of a novel modified trickling filter (MTF), conventional activated sludge process (ASP) and two tertiary systems (UV and ozonation) were compared in eliminating antibiotic-resistant bacteria (ARB), antibiotic resistance genes (ARGs) and pharmaceuticals and personal care products (PPCPs) from urban sewage. MTF and ASP resulted in >1 log unit reduction in the abundance of ARB, while for ARGs, the removal was observed in the range of 0.1 to 1.7 log units. In MTF, ARGs were substantially removed in the aerobic zone compared to the anoxic zone. The relative abundance of most of the ARGs either decreased or remained unchanged during MTF and ASP operations. However, the relative abundance of most of the ARGs increased in the secondary sludge generated from ASP. The concentration of PPCPs such as atenolol, sulfamethazine, triclosan, and ranitidine was reduced by MTF by >80 %. Overall, the results indicated that MTF followed by ozonation is the most effective combination for removing emerging contaminants from municipal sewage.


Assuntos
Poluentes Ambientais , Ozônio , Esgotos/microbiologia , Águas Residuárias/microbiologia , Genes Bacterianos , Antagonistas de Receptores de Angiotensina , Antibacterianos , Inibidores da Enzima Conversora de Angiotensina
8.
Ecotoxicol Environ Saf ; 240: 113689, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35636240

RESUMO

Airborne E. coli, fecal coliform, and Enterococcus are all related to sewage worker's syndrome and therefore used as target enteric bioaerosols about researches in wastewater treatment plants (WWTPs). However, most of the studies are often inadequately carried out because they lack systematic studies reports bioaerosols emission characteristics and health risk assessments for these three enteric bacteria during seasonal variation. Therefore, quantitative microbial risk assessment based on Monte Carlo simulation was utilized in this research to assess the seasonal variations of health risks of the three enteric bioaerosols among exposure populations (academic visitors, field engineers, and office staffs) in a WWTP equipped with rotating-disc and microporous aeration modes. The results show that the concentrations of the three airborne bacteria from the rotating-disc aeration mode were 2-7 times higher than the microporous aeration mode. Field engineers had health risks 1.5 times higher than academic visitors due to higher exposure frequency. Health risks of airborne Enterococcus in summer were up to 3 times higher than those in spring and winter. Similarly, health risks associated to E. coli aerosol exposure were 0.3 times higher in summer compared to spring. In contrast, health risks associated with fecal coliform aerosol were between 2 and 19 times lower in summer compared to spring and winter seasons. Data further suggest that wearing of N95 mask could minimize health risks by 1-2 orders of magnitude. This research shed light on seasonal variation of health risks associated with bioaerosol emission from wastewater utilities.


Assuntos
Microbioma Gastrointestinal , Purificação da Água , Aerossóis , Microbiologia do Ar , Escherichia coli , Bactérias Gram-Negativas , Humanos , Medição de Risco , Estações do Ano , Águas Residuárias/microbiologia
9.
J Environ Manage ; 308: 114668, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35152038

RESUMO

Waste stabilization pond (WSP) is natural technology which can be installed in centralized or semi-centralized sewerage systems for treatment of domestic and industrial wastewater, septage and sludge, etc. WSPs are highly efficient, simple to construct, low cost and easy to operate. It can be used as secondary or tertiary treatment unit in a treatment plant either individually or in a coupling manner. The algal-bacterial symbiosis in WSP makes it completely natural treatment process for which it becomes economic as compared to other treatment technologies in terms of its maintenance cost and energy requirement. Effluent from WSP can also be used for agricultural purpose, gardening, watering road, vehicle wash, etc. Advance technologies are being integrated for better design and efficiency of WSP, but the main challenges are the separation and removal of algal species which lead to deterioration of the water if stays long. Research is necessary to maximize algal growth yield, selection of beneficial strain and optimizing harvesting methods. This review focuses on the treatment mechanism in the pond, affecting factors, types of ponds, design equation, cost analysis.


Assuntos
Águas Residuárias , Purificação da Água , Custos e Análise de Custo , Lagoas , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/microbiologia , Purificação da Água/métodos
10.
PLoS One ; 17(1): e0261714, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34986185

RESUMO

A variety of antibiotics are ubiquitous in all freshwater ecosystems that receive wastewater. A wide variety of antibiotics have been developed to kill problematic bacteria and fungi through targeted application, and their use has contributed significantly to public health and livestock management. Unfortunately, a substantial fraction of the antibiotics applied to humans, pets and livestock end up in wastewater, and ultimately many of these chemicals enter freshwater ecosystems. The effect of adding chemicals that are intentionally designed to kill microbes, on freshwater microbial communities remains poorly understood. There are reasons to be concerned, as microbes play an essential role in nutrient uptake, carbon fixation and denitrification in freshwater ecosystems. Chemicals that reduce or alter freshwater microbial communities might reduce their capacity to degrade the excess nutrients and organic matter that characterize wastewater. We performed a laboratory experiment in which we exposed microbial community from unexposed stream sediments to three commonly detected antibiotics found in urban wastewater and urban streams (sulfamethoxazole, danofloxacin, and erythromycin). We assessed how the form and concentration of inorganic nitrogen, microbial carbon, and nitrogen cycling processes changed in response to environmentally relevant doses (10 µg/L) of each of these antibiotics individually and in combination. We expected to find that all antibiotics suppressed rates of microbial mineralization and nitrogen transformations and we anticipated that this suppression of microbial activity would be greatest in the combined treatment. Contrary to our expectations we measured few significant changes in microbially mediated functions in response to our experimental antibiotic dosing. We found no difference in functional gene abundance of key nitrogen cycling genes nosZ, mcrA, nirK, and amoA genes, and we measured no treatment effects on NO3- uptake or N2O, N2, CH4, CO2 production over the course of our seven-day experiment. In the mixture treatment, we measured significant increases in NH4+ concentrations over the first 24 hours of the experiment, which were indistinguishable from controls within six hours. Our results suggest remarkable community resistance to pressure antibiotic exposure poses on naïve stream sediments.


Assuntos
Antibacterianos/farmacologia , Bactérias/metabolismo , Carbono/metabolismo , Microbiota/efeitos dos fármacos , Nitrogênio/metabolismo , Águas Residuárias/microbiologia , Desnitrificação/efeitos dos fármacos , Ciclo do Nitrogênio/efeitos dos fármacos
11.
PLoS One ; 16(6): e0252691, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34086804

RESUMO

The spread of antibiotic resistance is closely related with selective pressure in the environment. Wastewater from industrialized regions is characterized by higher concentrations of these pollutants than sewage from less industrialized areas. The aim of this study was to compare the concentrations of contaminants such as antibiotics and heavy metals (HMs), and to evaluate their impact on the spread of genes encoding resistance to antimicrobial drugs in samples of wastewater, sewage sludge and river water in two regions with different levels of industrialization. The factors exerting selective pressure, which significantly contributed to the occurrence of the examined antibiotic resistance genes (ARGs), were identified. The concentrations of selected gene copy numbers conferring resistance to four groups of antibiotics as well as class 1 and 2 integron-integrase genes were determined in the analyzed samples. The concentrations of six HMs and antibiotics corresponding to genes mediated resistance from 3 classes were determined. Based on network analysis, only some of the analyzed antibiotics correlated with ARGs, while HM levels were correlated with ARG concentrations, which can confirm the important role of HMs in promoting drug resistance. The samples from a wastewater treatment plant (WWTP) located an industrialized region were characterized by higher HM contamination and a higher number of significant correlations between the analyzed variables than the samples collected from a WWTP located in a less industrialized region. These results indicated that treated wastewater released into the natural environment can pose a continuous threat to human health by transferring ARGs, antibiotics and HMs to the environment. These findings shed light on the impact of industrialization on antibiotic resistance dissemination.


Assuntos
Antibacterianos/análise , Água Doce/análise , Metais Pesados/análise , Esgotos/análise , Águas Residuárias/análise , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/isolamento & purificação , Resistência Microbiana a Medicamentos/genética , Água Doce/microbiologia , Desenvolvimento Industrial , Integrases/genética , Integrons/genética , Limite de Detecção , Esgotos/microbiologia , Eliminação de Resíduos Líquidos , Águas Residuárias/microbiologia
12.
Int Arch Occup Environ Health ; 94(6): 1327-1343, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33721095

RESUMO

PURPOSE: This study was to evaluate the occupational health risks of infection from Gram-negative bacteria and Staphylococcus aureus bioaerosols to temporary entrants and staffs equipped with various grade personal protection equipment (PPE) related to wastewater treatment plants (WWTPs). METHODS: This study determined the emission concentrations of Gram-negative bacteria and Staphylococcus aureus bioaerosols from two WWTPs under various aeration modes. Then, a strict quantitative microbial risk assessment (QMRA) was performed on several exposure scenarios associated with occupational health risks of temporary entrants (researchers, visitors, and inspectors) and staffs (field engineer and laboratory technician). RESULTS: Although the bioaerosol concentrations were generally regarded as safe according to existing standards, these bioaerosols' health risks were still unacceptable. The microbial bioaerosols posed considerable infection health risks in WWTPs. These risks were generally above the WHO and US EPA benchmarks. The health risks of females were always smaller than those of male of grown-up age group. Staffs that had been exposed to bioaerosols for a long time were found to have higher health risks compared with temporary entrants. In addition, field engineers equipped with PPE rendered low health risks, thus revealing that wearing PPE could effectively reduce the occupational health risks. CONCLUSION: This study provided novel data and enriched the knowledge of microbial bioaerosol emission's health risks from various aeration modes in WWTPs. Management decisions could be executed by authorities on the basis of the results of QMRA for field engineers equipped with PPE to reduce the related occupational health risks.


Assuntos
Poluentes Ocupacionais do Ar/análise , Bactérias Gram-Negativas/isolamento & purificação , Exposição por Inalação/análise , Exposição Ocupacional/análise , Staphylococcus aureus/isolamento & purificação , Purificação da Água , Adulto , Aerossóis , Microbiologia do Ar , Feminino , Infecções por Bactérias Gram-Negativas/epidemiologia , Humanos , Exposição por Inalação/prevenção & controle , Masculino , Máscaras , Pessoa de Meia-Idade , Doenças Profissionais/epidemiologia , Exposição Ocupacional/prevenção & controle , Saúde Ocupacional , Medição de Risco , Infecções Estafilocócicas/epidemiologia , Águas Residuárias/microbiologia , Adulto Jovem
13.
Bioprocess Biosyst Eng ; 44(2): 271-282, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32918146

RESUMO

Carboxylic acids (CA) are considered high added-value compounds, and their production from wastes has gained economic and environmental notoriety. However, the CA production and kinetic modeling using some agro-industrial wastewaters, such as bovine slaughterhouse wastewater (SHW), are not well reported in the literature. Therefore, the objective of this work was to evaluate the CA production potential using SHW as a substrate under acidogenic conditions and to apply mathematical models to estimate the kinetic parameters of particulate organic matter hydrolysis, soluble organic matter consumption, and CA production. Tests were carried out in quadruplicate batch reactors with a 250-mL reaction volume, with brewery sludge as inoculum and using chloroform (0.05%, v/v) for methanogenesis inhibition. The obtained yield was 0.55 g acids gCODA-1, corresponding to 0.76 gCOD gCODA-1. The production of caproic acid without the addition of electron donors was achieved. Mathematical models that describe exponential growth, such as the first-order exponential model, cone model, and Fitzhugh model, were the most suitable to describe the production kinetics of CA. Finally, SHW seems to be a promising substrate to be investigated in the carboxylic platform.


Assuntos
Reatores Biológicos , Ácidos Carboxílicos/metabolismo , Modelos Biológicos , Águas Residuárias/microbiologia , Microbiologia da Água , Matadouros , Animais , Bovinos , Cinética
14.
Artigo em Inglês | MEDLINE | ID: mdl-33374200

RESUMO

Among the critical issues that prevent the reuse of wastewater treatment plants (WWTPs) effluents in a circular economy perspective, the microbiological component plays a key role causing infections and diseases. To date, the use of conventional chemical oxidants (e.g., chlorine) represent the main applied process for wastewater (WW) disinfection following a series of operational advantages. However, toxicity linked to the production of highly dangerous disinfection by-products (DBPs) has been widely demonstrated. Therefore, in recent years, there is an increasing attention to implement sustainable processes, which can simultaneously guarantee the microbiological quality of the WWs treated and the protection of both humans and the environment. This review focuses on treatments based on ultraviolet radiation (UV) alone or in combination with other processes (sonophotolysis, photocatalysis and photoelectrocatalysis with both natural and artificial light) without the dosage of chemical oxidants. The strengths of these technologies and the most significant critical issues are reported. To date, the use of synthetic waters in laboratory tests despite real waters, the capital and operative costs and the limited, or absent, experience of full-scale plant management (especially for UV-based combined processes) represent the main limits to their application on a larger scale. Although further in-depth studies are required to ensure full applicability of UV-based combined processes in WWTPs for reuse of their purified effluents, excellent prospects are presented thanks to an absent environmental impact in terms of DBPs formation and excellent disinfection yields of microorganisms (in most cases higher than 3-log reduction).


Assuntos
Desinfecção , Raios Ultravioleta , Águas Residuárias/microbiologia , Purificação da Água , Cloro
15.
BMC Microbiol ; 20(1): 346, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33183235

RESUMO

BACKGROUND: Access to safe water for drinking and domestic activities remains a challenge in emerging economies like South Africa, forcing resource-limited communities to use microbiologically polluted river water for personal and household purposes, posing a public health risk. This study quantified bacterial contamination and the potential health hazards that wastewater treatment plant (WWTP) workers and communities may face after exposure to waterborne pathogenic bacteria in a WWTP and its associated surface water, respectively. RESULTS: Escherichia coli (Colilert®-18/ Quanti-Tray® 2000) and enterococci (Enterolert®/ Quanti-Tray® 2000) were quantified and definitively identified by real-time polymerase chain reaction targeting the uidA and tuf genes, respectively. An approximate beta-Poisson dose-response model was used to estimate the probability of infection (Pi) with pathogenic E. coli. Mean E. coli concentration ranged from 2.60E+ 02/100 mL to 4.84E+ 06/100 mL; enterococci ranged from 2.60E+ 02/100 mL to 3.19E+ 06/100 mL across all sampled sites. Of the 580 E. coli isolates obtained from this study, 89.1% were intestinal, and 7.6% were extraintestinal pathogenic E. coli. The 579 enterococci obtained were 50.4% E. faecalis (50.4%), 31.4% E. faecium, 3.5%, E. casseliflavus and 0.7% E. gallinarum. The community health risk stemming from the use of the water for recreational and domestic purposes revealed a greater health risk (Pi) from the ingestion of 1 mL of river water from upstream (range, 55.1-92.9%) than downstream (range, 26.8-65.3%) sites. The occupational risk of infection with pathogenic E. coli for workers resulting from a once-off unintentional consumption of 1 mL of water was 0% (effluent) and 23.8% (raw influent). Multiple weekly exposures of 1 mL over a year could result in a Pi of 1.2 and 100% for the effluent and influent, respectively. CONCLUSION: Our findings reveal that there is a potentially high risk of infection for WWTP workers and communities that use river water upstream and downstream of the investigated WWTP.


Assuntos
Águas Residuárias/microbiologia , Purificação da Água/estatística & dados numéricos , Enterococcus/classificação , Enterococcus/genética , Enterococcus/isolamento & purificação , Enterococcus/patogenicidade , Exposição Ambiental/análise , Exposição Ambiental/estatística & dados numéricos , Escherichia coli/classificação , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Humanos , Medição de Risco , Rios/microbiologia , África do Sul , Purificação da Água/normas
16.
J Microbiol Methods ; 176: 106023, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32795636

RESUMO

Acinetobacter baumannii causes serious multidrug resistant nosocomial infections around the world. This comprehensive comparative study was designed to assess the effect of temperature (30, 37 and 42 °C), incubation (aerobic and microaerobic) condition and selective [CHROMagar Acinetobacter (CHR) and Leeds Acinetobacter Medium (LAM)] and non-selective [Modified Karmali Agar (MKA)] growth media on the enhanced recovery of A. baumannii from a variety of water (agricultural, recreational, raw drinking intake source, pre-chlorinated and post-chlorinated wastewater effluent) samples spiked with a known number of A. baumannii cells. After spiking each water type with a known number of cells in 10 mL volume, the sample was passed through a membrane filter (pore size 0.45 µm) and filters were placed on different selective media plates and subjected to incubate at various incubation conditions. The results reported in this study show that for all water types tested (except post-chlorinated wastewater effluent), LAM was the most effective selective growth medium in combination with variable temperature and incubation conditions for yielding high recovery rates of A. baumannii cells. Overall, A. baumannii showed that it has a high adaptive capacity to grow on selective and non-selective growth media at different temperature and incubation conditions. The data described in this study suggest that no single incubation condition and growth media would efficiently recover A. baumannii from all environmental water types tested. This data also indicate that selective growth media and incubation condition can significantly affect the recovery of A. baumannii. Differences in recovery of A. baumannii observed in this study which appeared to be dependent on the temperature and environmental characteristics of incubation as well as the sample type, suggest the need for caution when comparing recovery using different protocols.


Assuntos
Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii , Água Potável/microbiologia , Águas Residuárias/microbiologia , Microbiologia da Água , Acinetobacter baumannii/crescimento & desenvolvimento , Acinetobacter baumannii/isolamento & purificação , Técnicas Bacteriológicas , Meios de Cultura , Fermentação
17.
Environ Geochem Health ; 42(11): 3819-3839, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32601907

RESUMO

Monitoring the groundwater chemical composition and identifying the presence of pollutants is an integral part of any comprehensive groundwater management strategy. The present study was conducted in a part of West Tripura, northeast India, to investigate the presence and sources of trace metals in groundwater and the risk to human health due to direct ingestion of groundwater. Samples were collected from 68 locations twice a year from 2016 to 2018. Mixed Ca-Mg-HCO3, Ca-Cl and Ca-Mg-Cl were the main groundwater types. Hydrogeochemical methods showed groundwater mineralization due to (1) carbonate dissolution, (2) silicate weathering, (3) cation exchange processes and (4) anthropogenic sources. Occurrence of faecal coliforms increased in groundwater after monsoons. Nitrate and microbial contamination from wastewater infiltration were apparent. Iron, manganese, lead, cadmium and arsenic were above the drinking water limits prescribed by the Bureau of Indian Standards. Water quality index indicated 1.5% had poor, 8.7% had marginal, 16.2% had fair, 66.2% had good and 7.4% had excellent water quality. Correlation and principal component analysis reiterated the sources of major ions and trace metals identified from hydrogeochemical methods. Human exposure assessment suggests health risk due to high iron in groundwater. The presence of unsafe levels of trace metals in groundwater requires proper treatment measures before domestic use.


Assuntos
Água Subterrânea/análise , Metais/análise , Oligoelementos/análise , Poluentes Químicos da Água/análise , Qualidade da Água , Carbonatos/análise , Carbonatos/química , Exposição Dietética/efeitos adversos , Exposição Dietética/análise , Água Potável/análise , Monitoramento Ambiental/métodos , Fezes/microbiologia , Água Subterrânea/química , Água Subterrânea/microbiologia , Humanos , Hidrologia/métodos , Índia , Nitratos/análise , Medição de Risco/métodos , Águas Residuárias/análise , Águas Residuárias/microbiologia , Microbiologia da Água
18.
Bioprocess Biosyst Eng ; 43(9): 1561-1571, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32306105

RESUMO

Long-term performance of a scaled-up air-cathode microbial fuel cell (MFC) and toxicity removal were studied with dairy wastewater (DW) used as the substrate. The MFC in a semi-continuous flow was strategically inoculated with consortium of Shewanella oneidensis and Clostridium butyricum. The scaled-up approach delivered a maximum power density of 0.48 W/m3 (internal resistance of 73 Ω) removing 93% of total chemical oxygen demand and 95% of total biochemical oxygen demand at organic loading rate (OLR) of 0.9 kg COD/m3/d and hydraulic retention time (HRT) of 21 days. It also achieved high removal efficiency of nitrate (100%), organic nitrogen (57%), sulfate (90%) and organic phosphorus (90%). The power generation and DW degradation performance decreased with OLR of 1.8 kg COD/m3/d and HRT of 10.5 days. Furthermore, testing of acute toxicity with the microcrustacean, Daphnia similis, revealed high toxic effect of the raw DW, but no toxic effects of the MFC effluent during 95 days of operation. These outcomes demonstrated that scaled-up MFC fed with high-strength DW should be an effective system for pollutants removal and simultaneously energy recovery.


Assuntos
Fontes de Energia Bioelétrica , Águas Residuárias/microbiologia , Análise da Demanda Biológica de Oxigênio , Indústria de Laticínios , Eletrodos
19.
PLoS One ; 14(9): e0221522, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31513594

RESUMO

The inactivation of antibiotic resistant Escherichia coli (Gram negative) and Staphylococcus aureus (Gram positive) seeded in greywater by bimetallic bio-nanoparticles was optimized by using response surface methodology (RSM). The bimetallic nanoparticles (Cu/Zn NPs) were synthesized in secondary metabolite of a novel fungal strain identified as Aspergillus iizukae EAN605 grown in pumpkin medium. Cu/Zn NPs were very effective for inhibiting growth of E. coli and S. aureus. The maximum inactivation was optimized with 0.028 mg mL-1 of Cu/Zn NPs, at pH 6 and after 60 min, at which the reduction of E. coli and S. aureus was 5.6 vs. 5.3 and 5.2 vs. 5.4 log reduction for actual and predicted values, respectively. The inactivation mechanism was described based on the analysis of untreated and treated bacterial cells by Field emission scanning electron microscopy (FESEM), Energy Dispersive X-Ray Spectroscopy (EDS), Atomic Force Microscopy (AFM) revealed a damage in the cell wall structure due to the effect of Cu/Zn NPs. Moreover, the Raman Spectroscopy showed that the Cu/Zn NPs led to degradation of carbohydrates and amino structures on the bacteria cell wall. The Fourier transform infrared spectroscopy (FTIR) analysis confirmed that the destruction take place in the C-C bond of the functional groups available in the bacterial cell wall. The techno economic analysis revealed that the biosynthesis Cu/Zn NPs is economically feasible. These findings demonstrated that Cu/Zn NPs can effectively inhibit pathogenic bacteria in the greywater.


Assuntos
Antibacterianos/biossíntese , Antibacterianos/farmacologia , Aspergillus/crescimento & desenvolvimento , Cobre/química , Águas Residuárias/microbiologia , Zinco/química , Antibacterianos/química , Aspergillus/metabolismo , Parede Celular , Cucurbita/microbiologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Metabolismo Secundário , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/isolamento & purificação
20.
Chemosphere ; 236: 124381, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31545190

RESUMO

Biological sulfur reduction is an attractive sulfidogenic technology for the treatment of organics-deficient metal-laden wastewater, because it theoretically reduces the electron donor consumption by 75%, compared to sulfate reduction. However, reducing the external organic substrate dosage may lower the sulfur reduction rate. Supplying with a more biodegradable organic substrate could possibly enhance sulfidogenic activity but also increase the chemical cost. Therefore, the sulfide production performance of a sulfur-reducing bioreactor feeding with varied levels of organic supply, and different types of organic substrates were investigated. The results showed that high-rate sulfide production (12.30 mg S/L/h) in a sulfur-reducing bioreactor can be achieved at the minimal dosage of organic substrate as low as 39 mg C/L of organic carbon in the influent. Changing the type of organic substrate posed a significant effect on the sulfidogenic activity in the sulfur-reducing bioreactor. Sodium acetate was found to be the optimal substrate to achieve the highest sulfide production rate (28.20 mg S/L/h) by sulfur-reducing bacteria (S0RB), followed by ethanol, methanol, glycerol, pyruvic acid, acetic acid, glucose, sucrose, malic acid, sodium formate, formic acid, N-propanol, N-butanol, lactic acid, sodium lactate, propionic acid and sodium propionate (2.87 mg S/L/h as the lowest rate). However, the cost-effectiveness analysis showed that glucose was the most cost-effective organic substrate to realize the sulfur reduction process in high sulfide production rate (20.13 mg S/L/h) and low chemical cost (5.94 kg S/$). The utilization pathway of the different organic substrates in the sulfur-reducing bioreactor was also discussed.


Assuntos
Reatores Biológicos/microbiologia , Compostos Orgânicos/análise , Bactérias Redutoras de Enxofre/metabolismo , Enxofre/metabolismo , Purificação da Água/métodos , Reatores Biológicos/economia , Análise Custo-Benefício , Metais/metabolismo , Compostos Orgânicos/economia , Compostos Orgânicos/metabolismo , Oxirredução , Sulfatos/metabolismo , Sulfetos/metabolismo , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/microbiologia , Purificação da Água/economia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA