Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 71(11): 6606-12, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16269688

RESUMO

The strain Pseudomonas putida DOT-T1E was tested for its ability to tolerate second phases of different alkanols for their use as solvents in two-liquid-phase biotransformations. Although 1-decanol showed an about 10-fold higher toxicity to the cells than 1-octanol, the cells were able to adapt completely to 1-decanol only and could not be adapted in order to grow stably in the presence of a second phase of 1-octanol. The main explanation for this observation can be seen in the higher water and membrane solubility of 1-octanol. The hydrophobicity (log P) of a substance correlates with a certain partitioning of that compound into the membrane. Combining the log P value with the water solubility, the maximum membrane concentration of a compound can be calculated. With this simple calculation, it is possible to predict the property of an organic chemical for its potential applicability as a solvent for two-liquid-phase biotransformations with solvent-tolerant P. putida strains. Only compounds that show a maximum membrane concentration of less than 400 mM, such as 1-decanol, seem to be tolerated by these bacterial strains when applied in supersaturating concentrations to the medium. Taking into consideration that a solvent for a two-liquid-phase system should possess partitioning properties for potential substrates and products of a fine chemical synthesis, it can be seen that 1-decanol is a suitable solvent for such biotransformation processes. This was also demonstrated in shake cultures, where increasing amounts of a second phase of 1-decanol led to bacteria tolerating higher concentrations of the model substrate 3-nitrotoluene. Transferring this example to a 5-liter-scale bioreactor with 10% (vol/vol) 1-decanol, the amount of 3-nitrotoluene tolerated by the cells is up to 200-fold higher than in pure aqueous medium. The system demonstrates the usefulness of two-phase biotransformations utilizing solvent-tolerant bacteria.


Assuntos
1-Octanol/metabolismo , Adaptação Fisiológica , Álcoois Graxos/metabolismo , Pseudomonas putida/crescimento & desenvolvimento , Solventes/metabolismo , Tolueno/análogos & derivados , Água , Reatores Biológicos , Biotecnologia/métodos , Meios de Cultura , Fermentação , Valor Preditivo dos Testes , Pseudomonas putida/metabolismo , Pseudomonas putida/fisiologia , Tolueno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA