Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Hazard Mater ; 475: 134828, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38876015

RESUMO

The prediction of ecological toxicity plays an increasingly important role in modern society. However, the existing models often suffer from poor performance and limited predictive capabilities. In this study, we propose a novel approach for ecological toxicity assessment based on pre-trained models. By leveraging pre-training techniques and graph neural network models, we establish a highperformance predictive model. Furthermore, we incorporate a variational autoencoder to optimize the model, enabling simultaneous discrimination of toxicity to bees and molecular degradability. Additionally, despite the low similarity between the endogenous hormones in bees and the compounds in our dataset, our model confidently predicts that these hormones are non-toxic to bees, which further strengthens the credibility and accuracy of our model. We also discovered the negative correlation between the degradation and bee toxicity of compounds. In summary, this study presents an ecological toxicity assessment model with outstanding performance. The proposed model accurately predicts the toxicity of chemicals to bees and their degradability capabilities, offering valuable technical support to relevant fields.


Assuntos
Redes Neurais de Computação , Abelhas/efeitos dos fármacos , Animais , Ecotoxicologia , Testes de Toxicidade
2.
Environ Toxicol Chem ; 43(5): 976-987, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38488751

RESUMO

There is a growing concern that chronic exposure to fungicides contributes to negative effects on honey bee development, life span, and behavior. Field and caged-bee studies have helped to characterize the adverse outcomes (AOs) of environmentally relevant exposures, but linking AOs to molecular/cellular mechanisms of toxicity would benefit from the use of readily controllable, simplified host platforms like cell lines. Our objective was to develop and optimize an in vitro-based mitochondrial toxicity assay suite using the honey bee as a model pollinator, and the electron transport chain (ETC) modulators boscalid and pyraclostrobin as model fungicides. We measured the effects of short (~30 min) and extended exposures (16-24 h) to boscalid and pyraclostrobin on AmE-711 honey bee cell viability and mitochondrial function. Short exposure to pyraclostrobin did not affect cell viability, but extended exposure reduced viability in a concentration-dependent manner (median lethal concentration = 4175 µg/L; ppb). Mitochondrial membrane potential (MMP) was affected by pyraclostrobin in both short (median effect concentration [EC50] = 515 µg/L) and extended exposure (EC50 = 982 µg/L) scenarios. Short exposure to 10 and 1000 µg/L pyraclostrobin resulted in a rapid decrease in the oxygen consumption rate (OCR), approximately 24% reduction by 10 µg/L relative to the baseline OCR, and 64% by 1000 µg/L. Extended exposure to 1000 µg/L pyraclostrobin reduced all respiratory parameters (e.g., spare capacity, coupling efficiency), whereas 1- and 10-µg/L treatments had no significant effects. The viability of AmE-711 cells, as well as the MMP and cellular respiration were unaffected by short and extended exposures to boscalid. The present study demonstrates that the AmE-711-based assessment of viability, MMP, and ETC functionality can provide a time- and cost-effective platform for mitochondrial toxicity screening relevant to bees. Environ Toxicol Chem 2024;43:976-987. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Assuntos
Compostos de Bifenilo , Sobrevivência Celular , Fungicidas Industriais , Mitocôndrias , Niacinamida , Niacinamida/análogos & derivados , Estrobilurinas , Animais , Estrobilurinas/toxicidade , Abelhas/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Fungicidas Industriais/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Niacinamida/farmacologia , Niacinamida/toxicidade , Potencial da Membrana Mitocondrial/efeitos dos fármacos
3.
Sci Rep ; 11(1): 18311, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526585

RESUMO

The adipokinetic hormone (AKH) of insects is considered an equivalent of the mammalian hormone glucagon as it induces fast mobilization of carbohydrates and lipids from the fat body upon starvation. Yet, in foraging honey bees, which lack fat body storage for carbohydrates, it was suggested that AKH may have lost its original function. Here we manipulated the energy budget of bee foragers to determine the effect of AKH on appetitive responses. As AKH participates in a cascade leading to acceptance of unpalatable substances in starved Drosophila, we also assessed its effect on foragers presented with sucrose solution spiked with salicin. Starved and partially-fed bees were topically exposed with different doses of AKH to determine if this hormone modifies food ingestion and sucrose responsiveness. We found a significant effect of the energy budget (i.e. starved vs. partially-fed) on the decision to ingest or respond to both pure sucrose solution and sucrose solution spiked with salicin, but no effect of AKH per se. These results are consistent with a loss of function of AKH in honey bee foragers, in accordance with a social life that implies storing energy resources in the hive, in amounts that exceed individual needs.


Assuntos
Abelhas/fisiologia , Metabolismo Energético , Comportamento Alimentar , Hormônios de Inseto/metabolismo , Oligopeptídeos/metabolismo , Ácido Pirrolidonocarboxílico/análogos & derivados , Animais , Abelhas/efeitos dos fármacos , Comportamento Animal , Metabolismo Energético/efeitos dos fármacos , Hormônios de Inseto/farmacologia , Oligopeptídeos/farmacologia , Ácido Pirrolidonocarboxílico/metabolismo , Ácido Pirrolidonocarboxílico/farmacologia , Inanição
5.
PLoS One ; 15(2): e0229295, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32059037

RESUMO

The statistical power of studies for the assessment of side effects of toxicants on honeybees conducted according to current guidelines is often limited. A new test design and modified field methods have therefore been developed to decrease uncertainty and variability and to be able to detect small effects. The new test design comprises a monitoring phase (before the tunnel phase) for the selection of honeybee colonies and modified methods, which include assessments of colony strength, an evaluation of the cell content of all cells of hives using photos and digital analysis, and the use of video recordings for the assessment of foraging activity and forager mortality. With the proposed new study design and the modified field methods variability between hives was considerably reduced, which resulted in a marked reduction of the minimum detectable difference (MDD). This makes it possible to address the Specific Protection Goals defined by the European Food Safety Authority and to gain unprecedented insight into the development of hives and driving factors.


Assuntos
Abelhas/efeitos dos fármacos , Abelhas/crescimento & desenvolvimento , Poluentes Ambientais/toxicidade , Praguicidas/toxicidade , Medição de Risco/métodos , Animais , Poluentes Ambientais/análise , Praguicidas/análise , Segurança
6.
Microsc Res Tech ; 83(4): 332-337, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31777117

RESUMO

The aim of this study was to evaluate the toxicity of titanium dioxide nanoparticles (TiO2 NPs) by short-term toxicity tests in Apis mellifera, considered an excellent bioindicator organism mainly due to its sensitivity. Bees have been exposed to several concentrations of TiO2 NPs (1 × 10-3 , 1 × 10-4 , 1 × 10-5 , 1 × 10-6 mg/10 ml) for 10 days. Morphostructural and histological assays were done on gut and honey sac. The research of exposure biomarkers like metallothioneins 1 (MT1) and Heat Shock Protein 70 (HSP70) was performed to verify if a detoxification mechanism has been activated in the exposed animals. No histological alteration on the epithelium of the gut and honey sac were observed in exposed samples. A significant positivity for anti-MT1 antibody was observed only in the honey sac cells. A weak positivity for HSP70 was observed in both structures analyzed. In several studies have shown the non-toxicity of TiO2 NPs on other model organisms, in our study, titanium dioxide nanoparticles was proven to be highly toxic at the highest concentration tested (100% of lethality to 1 × 10-3 mg/10 ml) and moderately toxic at lower concentrations. Honey bees proved to be excellent models for study of NPs toxicity and for monitoring environment.


Assuntos
Abelhas/efeitos dos fármacos , Nanopartículas/toxicidade , Titânio/toxicidade , Animais , Abelhas/citologia , Bioensaio , Biomarcadores , Proteínas de Choque Térmico HSP72/metabolismo , Técnicas Histológicas , Imuno-Histoquímica , Metalotioneína/metabolismo , Testes de Toxicidade
7.
Ecotoxicol Environ Saf ; 183: 109468, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31398580

RESUMO

Tephrosia vogelii Hook was excellent insecticidal plant, it was introduced into China and planted over a large area in Guangdong province. The main active components of T. vogelii was rotenone and it widely found in leaves and pods of T. vogelii. This paper study of the safety assessment of T. vogelii flowers to worker bees. In this paper, the content of rotenone in T. vogelii petal, nectar, pollen, pistil, and stamen samples were investigated by HPLC, and tested the toxicity of T. vogelii flowers for Apis cerana cerana during 24 h. The dissipation and dynamic of rotenone in A. c. cerana different biological compartments were investigated under indoor conditions during 24 h. The results showed, The LT50 of T. vogelii flowers to worker bees were collected from the eastern, western, southern, northern and top were 13.95, 24.17, 12.55, 26.48, and 18.84 h, the haemolymph of worker bees have the highest content of rotenone, the least accumulation of rotenone in workers bee's thorax, and the rate of dissipation was slowly during the whole study. In conclusion, the results showed the T. vogelii create security risks to worker bees under some ecosystems.


Assuntos
Abelhas/efeitos dos fármacos , Inseticidas/toxicidade , Rotenona/toxicidade , Tephrosia/química , Animais , China , Ecossistema , Flores/química , Flores/crescimento & desenvolvimento , Inseticidas/análise , Controle Biológico de Vetores , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento , Néctar de Plantas/química , Pólen/química , Rotenona/análise , Tephrosia/crescimento & desenvolvimento
8.
PLoS One ; 14(8): e0220029, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31386666

RESUMO

We present a method for calculating the Acute Insecticide Toxicity Loading (AITL) on US agricultural lands and surrounding areas and an assessment of the changes in AITL from 1992 through 2014. The AITL method accounts for the total mass of insecticides used in the US, acute toxicity to insects using honey bee contact and oral LD50 as reference values for arthropod toxicity, and the environmental persistence of the pesticides. This screening analysis shows that the types of synthetic insecticides applied to agricultural lands have fundamentally shifted over the last two decades from predominantly organophosphorus and N-methyl carbamate pesticides to a mix dominated by neonicotinoids and pyrethroids. The neonicotinoids are generally applied to US agricultural land at lower application rates per acre; however, they are considerably more toxic to insects and generally persist longer in the environment. We found a 48- and 4-fold increase in AITL from 1992 to 2014 for oral and contact toxicity, respectively. Neonicotinoids are primarily responsible for this increase, representing between 61 to nearly 99 percent of the total toxicity loading in 2014. The crops most responsible for the increase in AITL are corn and soybeans, with particularly large increases in relative soybean contributions to AITL between 2010 and 2014. Oral exposures are of potentially greater concern because of the relatively higher toxicity (low LD50s) and greater likelihood of exposure from residues in pollen, nectar, guttation water, and other environmental media. Using AITL to assess oral toxicity by class of pesticide, the neonicotinoids accounted for nearly 92 percent of total AITL from 1992 to 2014. Chlorpyrifos, the fifth most widely used insecticide during this time contributed just 1.4 percent of total AITL based on oral LD50s. Although we use some simplifying assumptions, our screening analysis demonstrates an increase in pesticide toxicity loading over the past 26 years, which potentially threatens the health of honey bees and other pollinators and may contribute to declines in beneficial insect populations as well as insectivorous birds and other insect consumers.


Assuntos
Agricultura , Praguicidas/toxicidade , Testes de Toxicidade Aguda/métodos , Animais , Abelhas/efeitos dos fármacos , Monitoramento Ambiental , Estados Unidos
9.
Environ Toxicol Chem ; 38(11): 2355-2370, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31408220

RESUMO

Flower-visiting insects (FVIs) are an ecologically diverse group of mobile, flying species that should be protected from pesticide effects according to European policy. However, there is an ongoing decline of FVI species, partly caused by agricultural pesticide applications. Therefore, the risk assessment framework needs to be improved. We synthesized the peer-reviewed literature on FVI groups and their ecology, habitat, exposure to pesticides, and subsequent effects. The results show that FVIs are far more diverse than previously thought. Their habitat, the entire agricultural landscape, is potentially contaminated with pesticides through multiple pathways. Pesticide exposure of FVIs at environmentally realistic levels can cause population-relevant adverse effects. This knowledge was used to critically evaluate the European regulatory framework of exposure and effect assessment. The current risk assessment should be amended to incorporate specific ecological properties of FVIs, that is, traits. We present data-driven tools to improve future risk assessments by making use of trait information. There are major knowledge gaps concerning the general investigation of groups other than bees, the collection of comprehensive data on FVI groups and their ecology, linking habitat to FVI exposure, and study of previously neglected complex population effects. This is necessary to improve our understanding of FVIs and facilitate the development of a more protective FVI risk assessment. Environ Toxicol Chem 2019;38:2355-2370. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.


Assuntos
Abelhas/fisiologia , Flores/fisiologia , Praguicidas/toxicidade , Medição de Risco , Animais , Abelhas/efeitos dos fármacos , Ecossistema , Exposição Ambiental/análise , Europa (Continente)
10.
Pest Manag Sci ; 75(10): 2549-2557, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31124265

RESUMO

Historically, bee regulatory risk assessment for pesticides has centred on the European honeybee (Apis mellifera), primarily due to its availability and adaptability to laboratory conditions. Recently, there have been efforts to develop a battery of laboratory toxicity tests for a range of non-Apis bee species to directly assess the risk to them. However, it is not clear whether the substantial investment associated with the development and implementation of such routine screening will actually improve the level of protection of non-Apis bees. We argue, using published acute toxicity data from a range of bee species and standard regulatory exposure scenarios, that current first-tier honeybee acute risk assessment schemes utilised by regulatory authorities are protective of other bee species and further tests should be conducted only in cases of concern. We propose similar analysis of alternative exposure scenarios (chronic and developmental) once reliable data for non-Apis bees are available to expand our approach to these scenarios. In addition, we propose that in silico (simulation) approaches can then be used to address population-level effects in more field-realistic scenarios. Such an approach could lead to a protective, but also workable, risk assessment for non-Apis species while contributing to pollination security in agricultural landscapes around the globe. © 2019 Society of Chemical Industry.


Assuntos
Abelhas/efeitos dos fármacos , Exposição Ambiental/efeitos adversos , Praguicidas/toxicidade , Testes de Toxicidade/estatística & dados numéricos , Animais , Medição de Risco/estatística & dados numéricos , Especificidade da Espécie
11.
Sci Total Environ ; 654: 60-71, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30439695

RESUMO

Neonicotinoid insecticides have been used in a wide range of crops through seed treatment, soil and foliar applications and a large database exists on both their lethal and sub-lethal effects on honey bees under controlled laboratory conditions. However, colony-level studies on the effects of neonicotinoids in field studies are limited, primarily due to their complexity and the resources required. This paper reports the combined results of two large-scale colony-feeding studies, each with 6 weeks of continuous dosing of 12 colonies per treatment (24 control) to 12.5, 25, 37.5, 50 or 100 ng thiamethoxam/g sucrose solution. Exposure continued beyond dosing with residues present in stored nectar and bee-bread. The studies were conducted in an area with limited alternative forage and colonies were required to forage for pollen and additional nectar The studies provide colony-level endpoints: significant effects (reductions in bees, brood) were observed after exposure to the two highest dose rates, colony loss occurred at the highest dose rate, but colonies were able to recover (2-3 brood cycles after the end of dosing) after dosing with 50 ng thiamethoxam/g sucrose. No significant colony-level effects were observed at lower dose rates. The data reported here support the conclusions of previous colony-level crop-based field studies with thiamethoxam, in which residues in pollen and nectar were an order of magnitude below the colony-level NOEC of 37.5 ng thiamethoxam/g sucrose. The feeding study data are also compared to the outcomes of regulatory Tier 1 risk assessments conducted using guidance provided by the USA, Canada, Brazil and the EU regulatory authorities. We propose an adaptation of the European chronic adult bee risk assessment that takes into account the full dataset generated in laboratory studies while still providing an order of magnitude of safety compared with the colony feeding study NOEC.


Assuntos
Abelhas/efeitos dos fármacos , Exposição Ambiental/efeitos adversos , Inseticidas/toxicidade , Tiametoxam/toxicidade , Ração Animal/análise , Animais , Abelhas/crescimento & desenvolvimento , Abelhas/metabolismo , Relação Dose-Resposta a Droga , Exposição Ambiental/análise , Mel/análise , Inseticidas/administração & dosagem , Nível de Efeito Adverso não Observado , Néctar de Plantas/química , Pólen/química , Própole/biossíntese , Medição de Risco , Estações do Ano , Sacarose/química , Tiametoxam/administração & dosagem , Fatores de Tempo
12.
J Insect Sci ; 18(5)2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30272218

RESUMO

The honey bee is a widely managed crop pollinator that provides the agricultural industry with the sustainability and economic viability needed to satisfy the food and fiber needs of our society. Excessive exposure to apicultural pesticides is one of many factors that has been implicated in the reduced number of managed bee colonies available for crop pollination services. The goal of this study was to assess the impact of exposure to commonly used, beekeeper-applied apicultural acaricides on established biochemical indicators of bee nutrition and immunity, as well as morphological indicators of growth and development. The results described here demonstrate that exposure to tau-fluvalinate and coumaphos has an impact on 1) macronutrient indicators of bee nutrition by reducing protein and carbohydrate levels, 2) a marker of social immunity, by increasing glucose oxidase activity, and 3) morphological indicators of growth and development, by altering body weight, head width, and wing length. While more work is necessary to fully understand the broader implications of these findings, the results suggest that reduced parasite stress due to chemical interventions may be offset by nutritional and immune stress.


Assuntos
Acaricidas/efeitos adversos , Abelhas/efeitos dos fármacos , Cumafos/efeitos adversos , Imunidade Inata/efeitos dos fármacos , Nitrilas/efeitos adversos , Piretrinas/efeitos adversos , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Animais , Criação de Abelhas , Abelhas/crescimento & desenvolvimento , Abelhas/imunologia , Abelhas/fisiologia
13.
Ecotoxicol Environ Saf ; 147: 200-205, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28843529

RESUMO

Sublethal impacts of pesticides on the locomotor activity might occur to different degrees and could escape visual observation. Therefore, our objective is the utilization of video-tracking to quantify how the acute oral exposure to different doses (0.1-2ng/bee) of the neonicotinoid "clothianidin" influences the locomotor activity of honeybees in a time course experiment. The total distance moved, resting time as well as the duration and frequency of bouts of laying upside down are measured. Our results show that bees exposed to acute sublethal doses of clothianidin exhibit a significant increase in the total distance moved after 30 and 60min of the treatment at the highest dose (2ng/bee). Nevertheless, a reduction of the total distance is observed at this dose 90min post-treatment compared to the distance of the same group after 30min, where the treated bees show an arched abdomen and start to lose their postural control. The treated bees with 1ng clothianidin show a significant increase in total distance moved over the experimental period. Moreover, a reduction in the resting time and increase of the duration and frequency of bouts of laying upside down at these doses are found. Furthermore, significant effects on the tested parameters are observed at the dose (0.5ng/bee) first at 60min post-treatment compared to untreated bees. The lowest dose (0.1ng/bee) has non-significant effects on the motor activity of honeybees compared to untreated bees over the experimental period.


Assuntos
Abelhas/efeitos dos fármacos , Monitoramento Ambiental/métodos , Guanidinas/toxicidade , Inseticidas/toxicidade , Locomoção/efeitos dos fármacos , Neonicotinoides/toxicidade , Tiazóis/toxicidade , Animais , Abelhas/fisiologia , Relação Dose-Resposta a Droga , Alemanha , Gravação em Vídeo
14.
Environ Sci Pollut Res Int ; 25(1): 896-907, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29067614

RESUMO

Despite their indisputable importance around the world, the pesticides can be dangerous for a range of species of ecological importance such as honeybees (Apis mellifera L.). Thus, a particular attention should be paid to their protection, not only for their ecological importance by contributing to the maintenance of wild plant diversity, but also for their economic value as honey producers and crop-pollinating agents. For all these reasons, the environmental protection requires the resort of risk assessment of pesticides. The goal of this work was therefore to develop a validated QSAR model to predict contact acute toxicity (LD50) of 111 pesticides to bees because the QSAR models devoted to this species are very scarce. The analysis of the statistical parameters of this model and those published in the literature shows that our model is more efficient. The QSAR model was assessed according to the OECD principles for the validation of QSAR models. The calculated values for the internal and external validation statistic parameters (Q 2 and [Formula: see text] are greater than 0.85. In addition to this validation, a mathematical equation derived from the ANN model was used to predict the LD50 of 20 other pesticides. A good correlation between predicted and experimental values was found (R 2 = 0.97 and RMSE = 0.14). As a result, this equation could be a means of predicting the toxicity of new pesticides.


Assuntos
Abelhas/efeitos dos fármacos , Ecotoxicologia/métodos , Modelos Biológicos , Praguicidas/toxicidade , Relação Quantitativa Estrutura-Atividade , Medição de Risco/métodos , Animais , Dose Letal Mediana , Praguicidas/classificação , Reprodutibilidade dos Testes
15.
J Toxicol Environ Health B Crit Rev ; 20(6-7): 346-364, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29144196

RESUMO

A quantitative weight of evidence (QWoE) methodology was used to assess higher tier studies on the effects of clothianidin (CTD) on honeybees. Assessment endpoints were population size and viability of commercially managed bees and quantity of hive products. A colony-level no-observed-adverse effect concentration (NOAEC) of 25 µg CTD/kg syrup, equivalent to an oral no-observed-adverse effect-dose (NOAED) of 7.3 ng/bee/d for all responses measured. Based on a NOAEC of 19.7 µg/kg pollen, the NOAED for honeybee larvae was 2.4 ng/bee larva/d. For exposures via dust, a no-observed-adverse effect rate of 4 g CTD/ha was used to assess relevance of exposures via deposition of dust. The overall weight of evidence suggested that there is minimal risk to honeybees from exposure to CTD from its use as a seed treatment. For exposures via dust, dust/seed and dust/foliar applications, there were no exposures greater than the NOAED for CTD in nectar and pollen, indicating a de minimis risk to honeybees when the route of exposure was via uptake in plants. Analysis of effect studies in the field indicated a consistent lack of relevant effects, regardless of the way CTD was applied. For exposures via dust, there were no adverse effects because of these applications and there were no exposures greater than the NOAED for CTD in nectar and pollen. The overall weight of evidence based on many studies indicated no adverse effects on colony viability or survival of the colony. Thus, the overall conclusion is that clothianidin, as currently used in good agricultural practices, does not present a significant risk to honeybees at the level of the colony.


Assuntos
Abelhas/efeitos dos fármacos , Guanidinas/toxicidade , Neonicotinoides/toxicidade , Medição de Risco , Tiazóis/toxicidade , Animais , Monitoramento Ambiental , Inseticidas/toxicidade , Nitrocompostos/toxicidade , Oxazinas/toxicidade , Tiametoxam , Testes de Toxicidade
16.
J Toxicol Environ Health B Crit Rev ; 20(6-7): 330-345, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29140765

RESUMO

A quantitative weight of evidence (QWoE) methodology was used to assess higher-tier studies on the effects of imidacloprid (IMI) on honeybees. Assessment endpoints were population size and viability of commercially managed bees and quantity of hive products. A colony-level no-observed-adverse effect concentration (NOAEC) of 25 µg IMI/kg syrup, equivalent to an oral no-observed-adverse-effect-dose of 7.3 ng/bee/d for all responses, was measured. The overall weight of evidence indicates that there is minimal risk to honeybees from exposure to IMI from its use as a seed treatment. Exposures via dusts from currently used seed coatings present a de minimis risk to honeybees when the route of exposure is via uptake in plants that are a source of pollen or nectar for honeybees. There were few higher-tier observational (ecoepidemiological) studies conducted with IMI. Considering all lines of evidence, the quality of the studies included in this analysis was variable, but the results of the studies were consistent and point to the same conclusion - that IMI had no adverse effects on viability of the honeybee colony. Thus, the overall conclusion is that IMI, as currently used as a seed treatment and with good agricultural practices, does not present a significant risk to honeybees at the level of the colony.


Assuntos
Abelhas/efeitos dos fármacos , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Medição de Risco , Animais , Monitoramento Ambiental , Guanidinas/toxicidade , Inseticidas/toxicidade , Oxazinas/toxicidade , Tiametoxam , Tiazóis/toxicidade , Testes de Toxicidade
17.
J Toxicol Environ Health B Crit Rev ; 20(6-7): 383-386, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29157159

RESUMO

This paper is a postscript to the four companion papers in this issue of the Journal (Solomon and Stephenson 2017a , 2017b ; Stephenson and Solomon 2017a , 2017b ). The first paper in the series described the conceptual model and the methods of the QWoE process. The other three papers described the application of the QWoE process to studies on imidacloprid (IMI), clothianidin (CTD), and thiamethoxam (TMX). This postscript was written to summarize the utility of the methods used in the quantitative weight of evidence (QWoE), the overall relevance of the results, and the environmental implications of the findings. Hopefully, this will be helpful to others who wish to conduct QWoEs and use these methods in assessment of risks.


Assuntos
Abelhas/efeitos dos fármacos , Neonicotinoides/toxicidade , Medição de Risco , Sementes , Animais , Monitoramento Ambiental , Guanidinas/toxicidade , Inseticidas/toxicidade , Nitrocompostos/toxicidade , Oxazinas/toxicidade , Tiametoxam , Tiazóis/toxicidade , Testes de Toxicidade
18.
J Toxicol Environ Health B Crit Rev ; 20(6-7): 365-382, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29157160

RESUMO

A quantitative weight of evidence (QWoE) methodology was used to assess several higher-tier studies on the effects of thiamethoxam (TMX) on honeybees. Assessment endpoints were population size and viability of commercially managed honeybee colonies and quantity of hive products. A higher-tier field toxicology study indicated a no-observed-adverse effect concentration (NOAEC) of 29.5 µg TMX/kg syrup, equivalent to an oral no-observed-adverse-effect-dose (NOAED) of 8.6 ng/bee/day for all responses measured. For exposures via deposition of dust, a conservative no-observed-adverse-effect-rate at the level of the colony was 0.1 g TMX/ha. There was minimal risk to honeybees from exposure to TMX via nectar and pollen from its use as a seed-treatment. For exposures via dust and dust/seed applications, there were no concentrations above the risk values for TMX in nectar and pollen. Although some risks were identified for potential exposures via guttation fluid, this route of exposure is incomplete; no apparent adverse effects were observed in field studies. For exposures via dust/seed and dust/foliar applications, few adverse effects were observed. Considering all lines of evidence, the quality of the studies included in this analysis was variable. However, the results of the studies were consistent and point to the same conclusion. The overall weight of evidence based on many studies indicates that TMX has no adverse effects on viability or survival of the colony. Thus, the overall conclusion is that the treatment of seeds with thiamethoxam, as currently used in good agricultural practices, does not present a significant risk to honeybees at the level of the colony.


Assuntos
Abelhas/efeitos dos fármacos , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Oxazinas/toxicidade , Medição de Risco , Tiazóis/toxicidade , Animais , Monitoramento Ambiental , Guanidinas/toxicidade , Inseticidas/toxicidade , Tiametoxam , Testes de Toxicidade
19.
J Toxicol Environ Health B Crit Rev ; 20(6-7): 316-329, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29157187

RESUMO

A quantitative weight of evidence (QWoE) methodology was developed and used to assess many higher-tier studies on the effects of three neonicotinoid insecticides: clothianidin (CTD), imidacloprid (IMI), and thiamethoxam (TMX) on honeybees. A general problem formulation, a conceptual model for exposures of honeybees, and an analysis plan were developed. A QWoE methodology was used to characterize the quality of the available studies from the literature and unpublished reports of studies conducted by or for the registrants. These higher-tier studies focused on the exposures of honeybees to neonicotinoids via several matrices as measured in the field as well as the effects in experimentally controlled field studies. Reports provided by Bayer Crop Protection and Syngenta Crop Protection and papers from the open literature were assessed in detail, using predefined criteria for quality and relevance to develop scores (on a relative scale of 0-4) to separate the higher-quality from lower-quality studies and those relevant from less-relevant results. The scores from the QWoEs were summarized graphically to illustrate the overall quality of the studies and their relevance. Through mean and standard errors, this method provided graphical and numerical indications of the quality and relevance of the responses observed in the studies and the uncertainty associated with these two metrics. All analyses were conducted transparently and the derivations of the scores were fully documented. The results of these analyses are presented in three companion papers and the QWoE analyses for each insecticide are presented in detailed supplemental information (SI) in these papers.


Assuntos
Abelhas/efeitos dos fármacos , Neonicotinoides/toxicidade , Medição de Risco , Animais , Monitoramento Ambiental , Guanidinas/toxicidade , Inseticidas/toxicidade , Nitrocompostos/toxicidade , Oxazinas/toxicidade , Projetos de Pesquisa , Tiametoxam , Tiazóis/toxicidade , Testes de Toxicidade
20.
Environ Toxicol Chem ; 36(9): 2345-2351, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28224659

RESUMO

Concern about the reproductive toxicity of plant protection products in honey bee reproducers is increasing. Because the reproductive capacity of honey bees is not currently considered during the risk assessment procedure performed during plant protection product registration, it is important to provide methods to assess such potential impairments. To achieve this aim, we used 2 different approaches that involved semifield and laboratory conditions to study the impact of fipronil on drone fertility. For each approach, the drones were reared for 20 d, from emergence to sexual maturity, and exposed to fipronil via a contaminated sugar solution. In both groups, the effects of fipronil were determined by studying life traits and fertility indicators. The results showed that the survival and maturity rates of the drones were better under laboratory conditions than under semifield conditions. Moreover, the drones reared under laboratory conditions produced more seminal fluid. Although these differences could be explained by environmental factors that may vary under semifield conditions, it was found that regardless of the approach used, fipronil did not affect survival rates, maturity rates, or semen volumes, whereas it did affect fertility by inducing a decrease in spermatozoa quantity that was associated with an increase in spermatozoa mortality. These results confirm that fipronil affects drone fertility and support the relevance of each approach for assessing the potential reproductive toxicity of plant protection products in honey bees. Environ Toxicol Chem 2017;36:2345-2351. © 2017 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.


Assuntos
Abelhas/efeitos dos fármacos , Praguicidas/toxicidade , Pirazóis/toxicidade , Animais , Abelhas/fisiologia , Fertilidade/efeitos dos fármacos , Masculino , Reprodução/efeitos dos fármacos , Espermatozoides/citologia , Espermatozoides/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA