Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 302
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(28): 41069-41083, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38842779

RESUMO

Triclosan (TCS), an antimicrobial additive in various personal and health care products, has been widely detected in aquatic environment around the world. The present study investigated the impacts of TCS in the gills of the fish, Cyprinus carpio employing histopathological, biochemical, molecular docking and simulation analysis. The 96 h LC50 value of TCS in C. carpio was found to be 0.968 mg/L. Fish were exposed to 1/1000th (1 µg/L), 1/100th (10 µg/L), and 1/10th (100 µg/L) of 96 h LC50 value for a period of 28 days. The histopathological alterations observed in the gills were hypertrophy, hyperplasia, edematous swellings, and fusion of secondary lamellae in TCS exposed groups. The severity of these alterations increased with both the concentration as well as the duration of exposure. The present study revealed that the activity of antioxidant enzymes such as superoxide dismutase, catalase, glutathione-S-transferase, glutathione reductase, glutathione peroxidase, and reduced glutathione content decreased significantly (p < 0.05) in both concentration and duration dependent manner. However, a significant (p < 0.05) increase in the activity of the metabolic enzymes such as acid phosphatase and alkaline phosphatase was observed in all three exposure concentrations of TCS from 7 to 28 days. The activity of acetylcholinesterase declined significantly (p < 0.05) from 7 to 28 days whereas the content of acetylcholine increased significantly at the end of 28 day. The experimental results were further confirmed by molecular docking and simulation analysis that showed strong binding of TCS with acetylcholinesterase enzyme. The study revealed that long-term exposure to sublethal concentrations of TCS can lead to severe physiological and histopathological alterations in the fish.


Assuntos
Acetilcolinesterase , Carpas , Brânquias , Simulação de Acoplamento Molecular , Triclosan , Animais , Triclosan/toxicidade , Brânquias/efeitos dos fármacos , Brânquias/patologia , Acetilcolinesterase/metabolismo , Poluentes Químicos da Água/toxicidade , Glutationa Transferase/metabolismo
2.
Pak J Pharm Sci ; 37(1): 25-32, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38741397

RESUMO

In the present study, antioxidant activity and inhibition of acetylcholinesterase (AChE) and paraoxonase (hPON 1) of Alchemilla lithophila extracts were evaluated for the first time. Besides, there is no research on the contents of phenolic compounds except for fatty acids. In this context, phenolic compounds of A. lithophila were investigated by liquid chromatography/ mass spectrometry (LC-MS/MS). The methanol extract of the A. lithophila exhibited significant inhibition on the AChE (IC50 value for methanol extract 0.162 ± 0.25 mg /mL, R2:0.992). Besides, antioxidant activities of the A. lithophila extracts were examined using by the methods ABTS•+ and DPPH• free radical scavenging potentials, FRAP and CUPRAC metal-reducing activities. ABTS•+ and DPPH• scavenging activities were found for methanol extract at 70.67% and water extract at 75.38%, respectively. Also, FRAP and CUPRAC metal-reducing were determined for water extract 0.796 and hexane extract 1.570 as absorbance. According to LC-MS/MS analyses, the amounts of ellagic acid, catechin hydrate, gallic acid, fumaric acid, luteolin, quercetin, kaempferol, acetohydroxamic acid, caffeic acid, syringic acid, hydroxybenzoic acid and salicylic acid were determined by LC-MS/MS, respectively. As a consequence, this study will be a useful resource for determining bioactivity and phenolic compound profile for natural medicine research.


Assuntos
Acetilcolinesterase , Alchemilla , Antioxidantes , Arildialquilfosfatase , Inibidores da Colinesterase , Acetilcolinesterase/metabolismo , Acetilcolinesterase/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/química , Arildialquilfosfatase/metabolismo , Arildialquilfosfatase/antagonistas & inibidores , Inibidores da Colinesterase/farmacologia , Fenóis/análise , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espectrometria de Massas em Tandem , Alchemilla/química
3.
Environ Sci Pollut Res Int ; 31(24): 35320-35331, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38730214

RESUMO

A multibiomarker approach helps assess environmental health as it provides a complete tool to understand the effects of environmental stressors on ecosystems and human health. We applied this approach in the central Atlantic Ocean of Morocco, an area subjected to the impact of many types of pollutants, threatening the durability of its resources. In this study, four biomarkers acetylcholinesterase (AChE), glutathione-s-transferase (GST), metallothioneins (MTs), and catalase (CAT) were measured in the digestive gland of the mussel Mytilus galloprovincialis collected from four sites: Imsouane (S1), Cap Ghir (S2), Imi Ouaddar (S3), and Douira (S4). These sites were chosen due to the diversity of impacts ranging from industrial to agricultural and touristic. We also assembled all the enzymatic responses (AChE, GST, CAT, and MTs), using the integrated biomarker response (IBR), to estimate the degree of impact of pollutants at the prospected sites to reveal all the complex interactions between biomarkers and to classify sites via the integrated approach. Results show a seasonal change in biomarker responses with variability between sites. We also recorded the highest levels of AChE inhibition and GST induction in S1, higher levels of catalase activity in S4, and a significant impact on metallothionein concentration in S1 and S3. This project highlights the interest in using a multibiomarker approach to ensure accurate interpretation of biomarker variation to protect the Moroccan coast and its resources.


Assuntos
Acetilcolinesterase , Biomarcadores , Catalase , Monitoramento Ambiental , Glutationa Transferase , Metalotioneína , Mytilus , Animais , Marrocos , Biomarcadores/metabolismo , Monitoramento Ambiental/métodos , Acetilcolinesterase/metabolismo , Glutationa Transferase/metabolismo , Metalotioneína/metabolismo , Catalase/metabolismo , Oceano Atlântico , Poluentes Químicos da Água/análise
4.
Talanta ; 276: 126263, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38788378

RESUMO

Enzyme handling and utilization bears many challenges such as their limited stability, intolerance of organic solvents, high cost, or inability to reuse. Most of these limitations can be overcome by enzyme immobilization on the surface of solid support. In this work, the recombinant form of human cholinesterases and monoamine oxidases as important drug targets for neurological diseases were immobilized on the surface of magnetic non-porous microparticles by a non-covalent bond utilizing the interaction between a His-tag terminus on the recombinant enzymes and cobalt (Co2+) ions immobilized on the magnetic microparticles. This type of binding led to targeted enzyme orientation, which completely preserved the catalytic activity and allowed high reproducibility of immobilization. In comparison with free enzymes, the immobilized enzymes showed exceptional stability in time and the possibility of repeated use. Relevant Km, Vmax, and IC50 values using known inhibitors were obtained using particular immobilized enzymes. Such immobilized enzymes on magnetic particles could serve as an excellent tool for a sustainable approach in the early stage of drug discovery.


Assuntos
Cobalto , Descoberta de Drogas , Enzimas Imobilizadas , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Humanos , Cobalto/química , Monoaminoxidase/metabolismo , Monoaminoxidase/química , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/enzimologia , Acetilcolinesterase/metabolismo , Acetilcolinesterase/química , Análise Custo-Benefício , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Estabilidade Enzimática
5.
Brain Behav ; 14(5): e3507, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38688895

RESUMO

INTRODUCTION: Alzheimer's disease (AD) is a neurodegenerative condition characterized by gradual loss of cognitive abilities (dementia) and is a major public health problem. Here, we aimed at investigating the effects of Rosa damascena essential oil (RDEO) on learning and memory functions in a rat model of amnesia induced by scopolamine, as well as on changes in acetylcholinesterase (AChE) activity, M1 muscarinic acetylcholine receptor (mAChR) expression, and brain-derived neurotrophic factor (BDNF) levels in the extracted brain tissues. METHODS: The control, amnesia (scopolamine, 1 mg/kg/i.p.) and treatment (RDEO, 100 µL/kg/p.o. or galantamine, 1.5 mg/kg/i.p.) groups were subjected to Morris water maze and new object recognition tests. AChE activity was assayed by ELISA, and M1 mAChR and BDNF concentration changes were determined by western blotting. Also, using computational tools, human M1 mAChR was modeled in an active conformation, and the major components of RDEO were docked onto this receptor. RESULTS: According to our behavioral tests, RDEO was able to mitigate the learning and memory impairments caused by scopolamine in vivo. Our in vitro assays showed that the observed positive effects correlated well with a decrease in AChE activity and an increase in M1 mAChR and BDNF levels in amnestic rat brains. We also demonstrated in an in silico setting that the major components of RDEO, specifically -citronellol, geraniol, and nerol, could be accommodated favorably within the allosteric binding pocket of active-state human M1 mAChR and anchored here chiefly by hydrogen-bonding and alkyl-π interactions. CONCLUSION: Our findings offer a solid experimental foundation for future RDEO-based medicinal product development for patients suffering from AD.


Assuntos
Acetilcolinesterase , Amnésia , Fator Neurotrófico Derivado do Encéfalo , Óleos Voláteis , Rosa , Escopolamina , Animais , Ratos , Amnésia/induzido quimicamente , Amnésia/tratamento farmacológico , Amnésia/metabolismo , Óleos Voláteis/farmacologia , Óleos Voláteis/administração & dosagem , Masculino , Rosa/química , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Acetilcolinesterase/metabolismo , Receptor Muscarínico M1/metabolismo , Ratos Wistar , Nootrópicos/farmacologia , Modelos Animais de Doenças , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Cognição/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos
6.
Chemosphere ; 355: 141772, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38548084

RESUMO

Carbamazepine (CBZ) is the most commonly used drug in epilepsy treatment, and its metabolites are commonly detected among persistent pharmaceuticals in the aquatic environment. This study aimed to investigate CBZ effects on early-life-stage zebrafish (Danio rerio) (from 2 to 168 hpf) by employing of an integrative approach linking endpoints from molecular to individual level: (i) development; (ii) locomotor activity; (iii) biochemical markers (lactate dehydrogenase, glutathione-S-transferase, acetylcholinesterase and catalase) and (iv) transcriptome analysis using microarray. A 168 h - LC50 of 73.4 mg L-1 and a 72 h - EC50 of 66.8 mg L-1 for hatching were calculated while developmental effects (oedemas and tail deformities) were observed at CBZ concentrations above 37.3 mg L-1. At the biochemical level, AChE activity proved to be the most sensitive parameter, as evidenced by its decrease across all concentrations tested (∼25% maximum reduction, LOEC (lowest observed effect concentration) < 0.6 µg L-1). Locomotor behaviour seemed to be depressed by CBZ although this effect was only evident at the highest concentration tested (50 mg L-1). Molecular analysis revealed a dose-dependent effect of CBZ on gene expression. Although only 25 genes were deregulated in organisms exposed to CBZ when compared to controls, both 0.6 and 2812 µg L-1 treatments impaired gene expression related to development (e.g. crygmxl1, org, klf2a, otos, stx16 and tob2) and the nervous system (e.g. Rtn3, Gdf10, Rtn3), while activated genes were associated with behavioural response (e.g. prlbr and taar). Altogether, our results indicate that environmentally relevant CBZ concentrations might affect biochemical and genetic traits of fish. Thus, the environmental risk of CBZ cannot be neglected, especially in a realistic scenario of constant input of domestic effluents into aquatic systems.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Acetilcolinesterase/metabolismo , Carbamazepina/metabolismo , Dose Letal Mediana , Poluentes Químicos da Água/metabolismo , Embrião não Mamífero
7.
Chem Biol Interact ; 392: 110929, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38417730

RESUMO

Despite the international convention on the prohibition of chemical weapons ratified in 1997, the threat of conflicts and terrorist attacks involving such weapons still exists. Among these, organophosphorus-nerve agents (OPs) inhibit cholinesterases (ChE) causing cholinergic syndrome. The reactivation of these enzymes is therefore essential to protect the poisoned people. However, these reactivating molecules, mainly named oximes, have major drawbacks with limited efficacy against some OPs and a non-negligible ChE inhibitor potential if administered at an inadequate dose, an effect that they are precisely supposed to mitigate. As a result, this project focused on assessing therapeutic efficacy, in mice, up to the NOAEL dose, the maximum dose of oxime that does not induce any observable toxic effect. NOAEL doses of HI-6 DMS, a reference oxime, and JDS364. HCl, a candidate reactivator, were assessed using dual-chamber plethysmography, with respiratory ventilation impairment as a toxicity criterion. Time-course modeling parameters and pharmacodynamic profiles, reflecting the interaction between the oxime and circulating ChE, were evaluated for treatments at their NOAEL and higher doses. Finally, the therapeutic potential against OPs poisoning was determined through the assessment of protective indices. For JDS364. HCl, the NOAEL dose corresponds to the smallest dose inducing the most significant therapeutic effect without causing any abnormality in ChE activity. In contrast, for HI-6 DMS, its therapeutic benefit was observed at doses higher than its NOAEL, leading to alterations in respiratory function. These alterations could not be directly correlated with ChE inhibition and had no adverse effects on survival. They are potentially attributed to the stimulation of non-enzymatic cholinergic targets by HI-6 DMS. Thus, the NOAEL appears to be an optimal dose for evaluating the efficacy of oximes, particularly when it can be linked to respiratory alterations effectively resulting from ChE inhibition.


Assuntos
Substâncias para a Guerra Química , Reativadores da Colinesterase , Agentes Neurotóxicos , Humanos , Camundongos , Animais , Reativadores da Colinesterase/farmacologia , Reativadores da Colinesterase/uso terapêutico , Reativadores da Colinesterase/química , Agentes Neurotóxicos/toxicidade , Nível de Efeito Adverso não Observado , Substâncias para a Guerra Química/toxicidade , Oximas/farmacologia , Oximas/uso terapêutico , Oximas/química , Compostos de Piridínio/farmacologia , Inibidores da Colinesterase/toxicidade , Inibidores da Colinesterase/química , Colinesterases , Acetilcolinesterase , Antídotos/farmacologia , Antídotos/uso terapêutico
8.
J Sci Food Agric ; 104(7): 3971-3981, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38252561

RESUMO

BACKGROUND: Symphytum (comfrey) genus, particularly Symphytum officinale, has been empirically used in folk medicine mainly for its potent anti-inflammatory properties. In an attempt to shed light on the valorization of less known taxa, the current study evaluated the metabolite profile and antioxidant and enzyme inhibitory effects of nine Symphytum species. RESULTS: Phenolic acids, flavonoids and pyrrolizidine alkaloids were the most representative compounds in all comfrey samples. Hierarchical cluster analysis revealed that, within the roots, S. grandiflorum was slightly different from S. ibericum, S. caucasicum and the remaining species. Within the aerial parts, S. caucasicum and S. asperum differed from the other samples. All Symphytum species showed good antioxidant and enzyme inhibitory activities, as evaluated in DPPH (up to 50.17 mg Trolox equivalents (TE) g-1), ABTS (up to 49.92 mg TE g-1), cupric reducing antioxidant capacity (CUPRAC, up to 92.93 mg TE g-1), ferric reducing antioxidant power (FRAP, up to 53.63 mg TE g-1), acetylcholinesterase (AChE, up to 0.52 mg galanthamine equivalents (GALAE) g-1), butyrylcholinesterase (BChE, up to 0.96 mg GALAE g-1), tyrosinase (up to 13.58 mg kojic acid equivalents g-1) and glucosidase (up to 0.28 mmol acarbose equivalents g-1) tests. Pearson correlation analysis revealed potential links between danshensu and ABTS/FRAP/CUPRAC, quercetin-O-hexoside and DPPH/CUPRAC, or rabdosiin and anti-BChE activity. CONCLUSIONS: By assessing for the first time in a comparative manner the phytochemical-biological profile of a considerably high number of Symphytum samples, this study unveils the potential use of less common comfrey species as novel phytopharmaceutical or agricultural raw materials. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Antioxidantes , Benzotiazóis , Confrei , Ácidos Sulfônicos , Antioxidantes/química , Confrei/química , Butirilcolinesterase , Acetilcolinesterase , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Compostos Fitoquímicos/farmacologia
9.
Food Chem ; 441: 138372, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38219364

RESUMO

Herein, we synthesized a novel N-doped carbon layer encapsulated Fe/Co bimetallic nanoparticles (Fe/Co-NC), which exhibited superior oxidase-like activity due to the facilitation of electron penetration and the formation of metal-nitrogen active sites. Fe/Co-NC could catalyze the oxidation of 3,3,5,5-tetramethylbenzidine (TMB) to blue oxTMB. Acetylcholinesterase (AChE) could catalyze the hydrolysis of thioacetylcholine to produce reducing thiocholine, which prevented TMB from oxidation. Thus, a portable hydrogel colorimetric sensor was developed for on-site and visual monitoring of AChE with the detection limit of 0.36 U L-1, and successfully applied to detect AChE in human erythrocyte samples. Furthermore, this platform was used to investigate the inhibition of triazophos on AChE activity.


Assuntos
Benzidinas , Praguicidas , Humanos , Praguicidas/análise , Oxirredutases/química , Acetilcolinesterase , Colorimetria , Hidrogéis
10.
Mol Biol Rep ; 51(1): 150, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38236489

RESUMO

BACKGROUND: Azo dyes are widely used in the food industry to prevent color loss during processing and storage of products. This study aimed to investigate the effect of a diazo dye Brilliant Black PN (E151) on oxidative stress-related parameters in fruit flies (Drosophila melanogaster) at biochemical and molecular levels. METHODS AND RESULTS: Third instar larvae were transferred to a medium containing the dye at different doses (1, 2.5, and 5 mg/mL). Gene expression and activity of superoxide dismutase, catalase (CAT), glutathione peroxidase (GPX), and acetylcholinesterase (AChE) enzymes were determined in the heads of adult flies obtained from these larvae. In addition, the glutathione (GSH) and malondialdehyde levels were measured using spectrophotometric analysis. Mitochondrial DNA (mtDNA) copy number was also detected by real-time PCR. The results showed that treatment with 5 mg/mL of the dye caused a decrease in both gene expression and enzyme activity of CAT and GPx. Moreover, the same dose of dye treatment decreased AChE activity, GSH level, and mtDNA copy number. CONCLUSIONS: As a result, Brilliant Black PN dye can trigger toxicity by altering the level and activity of oxidative stress-related biomarkers in a dose-dependent manner. Therefore, more comprehensive studies are needed to elucidate the side effect mechanism and toxicity of this dye.


Assuntos
Acetilcolinesterase , Drosophila melanogaster , Animais , Drosophila melanogaster/genética , Acetilcolinesterase/genética , Drosophila , Compostos Azo/toxicidade , DNA Mitocondrial/genética , Glutationa , Larva , Estresse Oxidativo
11.
Sci Total Environ ; 912: 169079, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38049000

RESUMO

Globally, riverine system biodiversity is threatened by a range of stressors, spanning pollution, sedimentation, alterations to water flow, and climate change. Pesticides have been associated with population level impacts on freshwater invertebrates for acute high-level exposures, but far less is known about the chronic impact of episodic exposure to specific classes of pesticides or their mixtures. Here we employed the use of the UK Environment Agency's monitoring datasets over 40 years (covering years 1980 to 2019) to assess the impacts of AChE (acetylcholinesterase) and GABA (gamma-aminobutyric acid) receptor targeting pesticides on invertebrate family richness at English river sites. Concentrations of AChE and GABA pesticides toxic to freshwater invertebrates occurred (measured) across 18 of the 66 river sites assessed. For one of the three river sites (all found in the Midlands region of England) where data recorded over the past 40 years were sufficient for robust modelling studies, both AChE and GABA pesticides associated with invertebrate family richness. Here, where AChE total pesticide concentrations were classified as high, 46 of 64 invertebrate families were absent, and where GABA total pesticide concentration were classified as high, 16 of 64 invertebrate families were absent. Using a combination of field evidence and laboratory toxicity thresholds for population relevant endpoints we identify families of invertebrates most at risk in the selected English rivers to AChE and GABA pesticides. We, furthermore, provide strong evidence that the absence of the invertebrate family Polycentropodidae (caddisfly) from one field site is due to exposure effects to AChE pesticides.


Assuntos
Praguicidas , Poluentes Químicos da Água , Animais , Praguicidas/toxicidade , Praguicidas/análise , Acetilcolinesterase , Insetos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Invertebrados , Água Doce , Monitoramento Ambiental , Ácido gama-Aminobutírico , Ecossistema
12.
Sci Total Environ ; 912: 168757, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38008309

RESUMO

Liquid crystal monomers (LCMs) are widely used in liquid crystal displays (LCDs) and are proposed to be a new generation of environmentally persistent, bioaccumulative and toxic (PBT) substances that are increasingly detected in rivers and seas. However, there is a lack of in vivo data that characterize adverse responses and toxic mechanisms of LCMs on aquatic organisms. The aim of this study was to comprehensively investigate the effect of four typical LCMs on the lethality, growth, molting, and reproductive capacity of Daphnia magna (D. magna), a highly studied aquatic species in environmental toxicology. Whole body and enzymatic biomarkers (i.e., body length, chitobiase, acetylcholinesterase, antioxidant defense) were measured to assess the toxicity of LCMs. The 48 h mortality rate and observations of disrupted thorax development and inhibition of ecdysis indicate that D. magna are sensitive to LCMs exposure. Oxidative stress, impaired neurotransmission, and disruptions in molting were observed in short-term biomarker tests using LCMs. A 21 day exposure of D. magna to LCMs resulted in reduced growth, reproduction, and population intrinsic growth rate. In addition, chitobiase and 20-hydroxyecdysone, enzymes important for the molting process, were altered at 7, 14 and 21 d. This is hypothesized to be related to endocrine imbalance resulting from LCM exposure. Based on molecular docking simulations, there is evidence that LCMs bind directly to ecdysteroid receptors; this may explain the observed endocrine disrupting effects of LCMs. These data support the hypothesis that LCMs are endocrine disrupting chemicals in aquatic species, impacting the process of molting. This may subsequently lead to lower reproduction and unbalanced population dynamics.


Assuntos
Disruptores Endócrinos , Cristais Líquidos , Poluentes Químicos da Água , Animais , Daphnia magna , Disruptores Endócrinos/toxicidade , Disruptores Endócrinos/metabolismo , Acetilglucosaminidase/metabolismo , Acetilcolinesterase/metabolismo , Simulação de Acoplamento Molecular , Daphnia , Reprodução , Poluentes Químicos da Água/metabolismo
13.
Ecotoxicology ; 32(9): 1125-1140, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37740166

RESUMO

The dispersed pollution caused by microplastics (MPs) represents a current and global concern. While the fragmentation of plastic debris into smaller particles occurs in rivers, little MP research is done on freshwater species and is published compared to the marine environment. The Loire River is the longest river in France and is subject to moderate to high anthropic pressure while it represents major societal and economic issues. However, there are not many studies that have been put forward with regards to the effect of environmental MPs (EMPs) on aquatic organisms and no policies have been enacted to monitor the plastic pollution. In this study, freshwater bivalves, Corbicula fluminea, were exposed for 21 days to environmentally relevant concentrations of a mixture of <200 µm MPs generated from plastic litter collected directly along the banks of the Loire River. This mixture was composed of 40% polyethylene (PE), 40% polypropylene (PP), 10% polyethylene terephthalate (PET) and 10% polyvinylchloride (PVC) (mass percentage). Ecotoxicological effects were assessed from the individual to the molecular levels on several endpoints: condition index, filtration efficiency, enzyme activities, lipid peroxidation, energy reserves and gene expression. The ingestion of EMPs caused damages at the biochemical level. Indeed, we reported an increase in catalase activity in gills and digestive mass, a decrease in TBARs in gills, a decrease in acetylcholinesterase activity in the digestive mass, a decrease of glycogen and lipid contents in the whole organisms and a significant induction of the expression of gst, cat, mp, acp genes. The current results suggest therefore that long-term exposure to realistic doses of EMPs causes toxicity towards freshwater benthic biota. The analysis of biomarker activities and the analysis of gene expression are complementary to prevent the effects of a plastic contamination at higher biological levels in aquatic organisms.


Assuntos
Corbicula , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Plásticos/toxicidade , Rios , Acetilcolinesterase , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
14.
Chem Biol Interact ; 383: 110658, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37572873

RESUMO

Oxidative stress status and morphological injuries in the brain of Wistar rats induced by repeated application of selected acetylcholinesterase reactivators - asoxime, obidoxime, K027, K048, K074, and K075 were evaluated. Each oxime in a dose of 0.1 of LD50/kg im was given 2x/week for 4 weeks. Markers of lipid peroxidation (malondialdehyde, MDA), and protein oxidation (advanced oxidation protein products, AOPP), as well as the activity of antioxidant enzymes (catalase, CAT, superoxide dismutase, SOD, glutathione reductase, GR, and glutathione peroxidase, GPx), were estimated in the brain tissue homogenates on day 35 of the study. Brain alterations were carefully quantified by semiquantitative grading scales - brain damage score (BDS). Oxidative stress parameters, MDA and AOPP were significantly highest in the asoxime-, obidoxime- and K075-treated groups (p < 0.001). The activity of SOD and CAT was significantly elevated in the obidoxime-, K048-, and K075-treated groups (p < 0.001). Besides, GR was markedly decreased in the obidoxime- and K074-treated groups (p < 0.01), while treatment with K048, K074 and K075 induced extremely high elevation in GPx levels (p < 0.001). In the same groups of rats, brain alterations associated with polymorphonuclear cell infiltrate were significantly more severe than those observed in animals receiving only asoxime or K027 (p < 0.001). The presented results confirmed that treatment with different oximes significantly improved the oxidative status and attenuated signs of inflammation in rats' brains. Presented results, together with our previously published data can help to predict likely adverse systemic toxic effects, and target organ systems, which are crucial for establishing risk categories, as well as in dose selection of K-oximes as drug candidates.


Assuntos
Cloreto de Obidoxima , Oximas , Ratos , Animais , Oximas/farmacologia , Cloreto de Obidoxima/farmacologia , Ratos Wistar , Acetilcolinesterase/metabolismo , Produtos da Oxidação Avançada de Proteínas/metabolismo , Produtos da Oxidação Avançada de Proteínas/farmacologia , Estresse Oxidativo , Encéfalo , Superóxido Dismutase/metabolismo
15.
Biosci Trends ; 17(4): 283-292, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37612122

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder that affects millions worldwide and is expected to surge in prevalence due to aging populations. Frailty, characterized by muscle function decline, becomes more prevalent with age, imposing substantial burdens on patients and caregivers. This paper aimed to comprehensively review the current literature on AD coupled with frailty, encompassing prevalence, screening, assessment, and treatment while delving into the field's challenges and future trajectories. Frailty and AD coexist in more than 30% of cases, with hazard ratios above 120% indicating a mutually detrimental association.Various screening tools have emerged for both frailty and AD, including the Fried Frailty Phenotype (FP), FRAIL scale, Edmonton Frailty Scale (EFS), Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), Clock Drawing Test (CDT), and General Practitioner Assessment of Cognition (GPCOG). However, none has solidified its role as the definitive gold standard. The convergence of electronic health records and brain aging biomarkers heralds a new era in AD with frailty screening and assessment. In terms of intervention, non-pharmacological strategies spanning nutrition, horticulture, exercise, and social interaction, along with pharmacological approaches involving acetylcholinesterase inhibitors (AChEIs), N-methyl-D-aspartate (NMDA) receptor antagonists, and anti-amyloid beta-protein medications, constituted cornerstones for treating AD coupled with frailty. Technological interventions like repetitive transcranial magnetic stimulation (rTMS) also entered the fold. Notably, multi-domain non-pharmacological interventions wield considerable potential in enhancing cognition and mitigating disability. However, the long-term efficacy and safety of pharmacological interventions necessitate further validation. Diagnosing and managing AD with frailty present several daunting challenges, encompassing low rates of early co-diagnosis, limited clinical trial evidence, and scarce integrated, pioneering service delivery models. These challenges demand heightened attention through robust research and pragmatic implementation.


Assuntos
Doença de Alzheimer , Fragilidade , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/epidemiologia , Doença de Alzheimer/terapia , Prevalência , Acetilcolinesterase , Fragilidade/diagnóstico , Fragilidade/epidemiologia , Fragilidade/terapia , Envelhecimento
16.
Molecules ; 28(14)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37513405

RESUMO

Edible insects (Alphitobius diaperinus Panzer, Gryllus campestris, Tenebrio molitor, Chorthippus biguttulus) are rich in nutrients that potentially inhibit acetylcholinesterase (AChE), but also improve cognition. The aim of this study was to evaluate four varied species of freeze-dried edible insects (purchased from a store); their nutrient composition, including fat, total phenolic compounds, vitamins, and antioxidant properties; and the potential inhibitory effect of AChE. An additional goal was to obtain olive oil with the addition of edible insects. Such oil was characterized by high oxidizing properties and showed high affinity to AChE. The results showed that mealworms and grasshoppers had the highest content of fats (PUFA/SFA) and phenolic compounds. These insects also showed a high content of vitamins, which correlated with the highest affinity for AChE. Therefore, they were added as a functional additive to olive oil. Olive oil with the addition of edible insects showed a higher affinity for AChE and enriched the olive oil with vitamin C and B vitamins.


Assuntos
Insetos Comestíveis , Gafanhotos , Tenebrio , Animais , Azeite de Oliva , Acetilcolinesterase , Pós , Vitaminas
17.
Inflammopharmacology ; 31(5): 2685-2699, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37515653

RESUMO

Alzheimer's disease (AD) is a major neurological disease affecting elderly individuals worldwide. Existing drugs only reduce the symptoms of the disease without addressing the underlying causes. Commonly, Aß25-35 peptide aggregation is the main reason for AD development. Recently, the discovery of multiple protein-targeting molecules has provided a new strategy for treating AD. This study demonstrates the neuroprotective potential of oxymatrine against multiple mechanisms, such as acetylcholinesterase, mitochondrial damage, and ß-amyloid-induced cell toxicity. The in vitro cell culture studies showed that oxymatrine possesses significant potential to inhibit acetylcholine esterase and promotes antioxidant, antiapoptotic effects while preventing Aß25-35 peptide aggregation in PC12 cells. Furthermore, oxymatrine protects PC12 cells against Aß25-35-induced cytotoxicity and down-regulates the reactive oxygen species generation. The in vivo acute toxicological studies confirm the safety of oxymatrine without causing organ damage or death in animals. Overall, this study provided evidence that oxymatrine is an efficient neuroprotective agent, with a potential to be a multifunctional drug for Alzheimer's disease treatment. These findings present a reliable and synergistic approach for treating AD.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Humanos , Ratos , Animais , Idoso , Peptídeos beta-Amiloides/metabolismo , Células PC12 , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Acetilcolinesterase/farmacologia , Apoptose , Fragmentos de Peptídeos/toxicidade , Técnicas de Cultura de Células , Cognição , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
18.
Food Chem Toxicol ; 178: 113877, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37336387

RESUMO

During and after fabrication of polymeric food contact articles (FCA), polymers undergo oxidation by thermal decomposition processes initiated by oxygen, heat, light, shear, and catalyst residues. To reduce degradation of the polymer, a commonly used secondary antioxidant (AO), Irgafos 168 (I-168), may be included. Use of I-168 in polymeric FCAs presents a potential concern for neurotoxicity due to its phosphate-containing degradation species, I-168ate. As a result, we evaluated dietary exposure and oral toxicity data for I-168 and its degradants when used as an AO in FCAs. Our exposure assessment included extensive review of the U.S. food-contact regulatory history of I-168 resulting in a combined cumulative estimated daily intake (CEDI) of 0.09 mg/kg bw/day for I-168 and I-168ate when used as an AO in FCAs. Our comprehensive literature review of toxicological data and supporting structure activity relationship (SAR) analysis of I-168 reactivity against acetylcholinesterase diminished concern for potential neurotoxic effects of I-168 and its degradants. An acceptable daily intake (ADI) value of 1 mg/kg bw/day for I-168 was derived from a two-year rodent combined chronic toxicity/carcinogenicity study, which is higher than the CEDI and supports the safety of current authorized food contact use levels of I-168.


Assuntos
Antioxidantes , Fosfitos , Antioxidantes/toxicidade , Fosfitos/toxicidade , Acetilcolinesterase , Alimentos
19.
Biosensors (Basel) ; 13(6)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37366964

RESUMO

Excessive use of pesticides could potentially harm the environment for a long time. The reason for this is that the banned pesticide is still likely to be used incorrectly. Carbofuran and other banned pesticides that remain in the environment may also have a negative effect on human beings. In order to provide a better chance for effective environmental screening, this thesis describes a prototype of a photometer tested with cholinesterase to potentially detect pesticides in the environment. The open-source portable photodetection platform uses a color-programmable red, green and blue light-emitting diode (RGB LED) as a light source and a TSL230R light frequency sensor. Acetylcholinesterase from Electrophorus electricus (AChE) with high similarity to human AChE was used for biorecognition. The Ellman method was selected as a standard method. Two analytical approaches were applied: (1) subtraction of the output values after a certain period of time and (2) comparison of the slope values of the linear trend. The optimal preincubation time for carbofuran with AChE was 7 min. The limits of detection for carbofuran were 6.3 nmol/L for the kinetic assay and 13.5 nmol/L for the endpoint assay. The paper demonstrates that the open alternative for commercial photometry is equivalent. The concept based on the OS3P/OS3P could be used as a large-scale screening system.


Assuntos
Carbofurano , Praguicidas , Humanos , Inibidores da Colinesterase , Acetilcolinesterase , Colinesterases
20.
BMC Complement Med Ther ; 23(1): 203, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37337198

RESUMO

BACKGROUND: Reports have implicated diabetes mellitus (DM) and Alzheimer's disease (AD) as some of the global persistent health challenges with no lasting solutions, despite of significant inputs of modern-day pharmaceutical firms. This study therefore, aimed to appraise the in vitro antioxidant potential, enzymes inhibitory activities, and as well carry out in silico study on bioactive compounds from polyphenolic-rich extract of Hibiscus cannabinus seed (PEHc). METHODS: In vitro antioxidant assays were performed on PEHc using standard methods while the identification of phytoconstituents was carried out with high performance liquid chromatography (HPLC). For the in silico molecular docking using Schrodinger's Grid-based ligand docking with energetics software, seven target proteins were retrieved from the database ( https://www.rcsb.org/ ). RESULTS: HPLC technique identified twelve chemical compounds in PEHc, while antioxidant quantification revealed higher total phenolic contents (243.5 ± 0.71 mg GAE/g) than total flavonoid contents (54.06 ± 0.09 mg QE/g) with a significant (p < 0.05) inhibition of ABTS (IC50 = 218.30 ± 0.87 µg/ml) and 1, 1-diphenyl-2-picrylhydrazyl free radicals (IC50 = 227.79 ± 0.74 µg/ml). In a similar manner, the extract demonstrated a significant (p < 0.05) inhibitory activity against α-amylase (IC50 = 256.88 ± 6.15 µg/ml) and α-glucosidase (IC50 = 183.19 ± 0.23 µg/ml) as well as acetylcholinesterase (IC50 = 262.95 ± 1.47 µg/ml) and butyrylcholinesterase (IC50 = 189.97 ± 0.82 µg/ml), respectively. Furthermore, In silico study showed that hibiscetin (a lead) revealed a very strong binding affinity energies for DPP-4, (PDB ID: 1RWQ) and α-amylase (PDB ID: 1SMD), gamma-tocopherol ( for peptide-1 receptor; PDB ID: 3C59, AChE; PDB ID: 4EY7 and BChE; PDB ID: 7B04), cianidanol for α-glucosidase; PDB ID: 7KBJ and kaempferol for Poly [ADP-ribose] polymerase 1 (PARP-1); PDB ID: 6BHV, respectively. More so, ADMET scores revealed drug-like potentials of the lead compounds identified in PEHc. CONCLUSION: As a result, the findings of this study point to potential drug-able compounds in PEHc that could be useful for the management of DM and AD.


Assuntos
Antioxidantes , Hibiscus , Antioxidantes/química , Hipoglicemiantes/farmacologia , Butirilcolinesterase , Acetilcolinesterase , Simulação de Acoplamento Molecular , alfa-Glucosidases , Extratos Vegetais/farmacologia , Extratos Vegetais/química , alfa-Amilases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA