Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Genes (Basel) ; 15(5)2024 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-38790242

RESUMO

Many organisms facultatively produce different phenotypes depending on their environment, yet relatively little is known about the genetic bases of such plasticity in natural populations. In this study, we describe the genetic variation underlying an extreme form of plasticity--resource polyphenism--in Mexican spadefoot toad tadpoles, Spea multiplicata. Depending on their environment, these tadpoles develop into one of two drastically different forms: a carnivore morph or an omnivore morph. We collected both morphs from two ponds that differed in which morph had an adaptive advantage and performed genome-wide association studies of phenotype (carnivore vs. omnivore) and adaptive plasticity (adaptive vs. maladaptive environmental assessment). We identified four quantitative trait loci associated with phenotype and nine with adaptive plasticity, two of which exhibited signatures of minor allele dominance and two of which (one phenotype locus and one adaptive plasticity locus) did not occur as minor allele homozygotes. Investigations into the genetics of plastic traits in natural populations promise to provide novel insights into how such complex, adaptive traits arise and evolve.


Assuntos
Adaptação Fisiológica , Anuros , Estudo de Associação Genômica Ampla , Fenótipo , Locos de Características Quantitativas , Animais , Anuros/genética , Estudo de Associação Genômica Ampla/métodos , Adaptação Fisiológica/genética , Larva/genética , Larva/crescimento & desenvolvimento , Variação Genética
2.
Plant Commun ; 5(6): 100856, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38431772

RESUMO

Actinidia arguta, the most widely distributed Actinidia species and the second cultivated species in the genus, can be distinguished from the currently cultivated Actinidia chinensis on the basis of its small and smooth fruit, rapid softening, and excellent cold tolerance. Adaptive evolution of tetraploid Actinidia species and the genetic basis of their important agronomic traits are still unclear. Here, we generated a chromosome-scale genome assembly of an autotetraploid male A. arguta accession. The genome assembly was 2.77 Gb in length with a contig N50 of 9.97 Mb and was anchored onto 116 pseudo-chromosomes. Resequencing and clustering of 101 geographically representative accessions showed that they could be divided into two geographic groups, Southern and Northern, which first diverged 12.9 million years ago. A. arguta underwent two prominent expansions and one demographic bottleneck from the mid-Pleistocene climate transition to the late Pleistocene. Population genomics studies using paleoclimate data enabled us to discern the evolution of the species' adaptation to different historical environments. Three genes (AaCEL1, AaPME1, and AaDOF1) related to flesh softening were identified by multi-omics analysis, and their ability to accelerate flesh softening was verified through transient expression assays. A set of genes that characteristically regulate sexual dimorphism located on the sex chromosome (Chr3) or autosomal chromosomes showed biased expression during stamen or carpel development. This chromosome-level assembly of the autotetraploid A. arguta genome and the genes related to important agronomic traits will facilitate future functional genomics research and improvement of A. arguta.


Assuntos
Actinidia , Genoma de Planta , Tetraploidia , Actinidia/genética , Evolução Molecular , Adaptação Fisiológica/genética , Evolução Biológica
3.
Sci Rep ; 14(1): 108, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168919

RESUMO

Phenotypic plasticity is usually defined as a property of individual genotypes to produce different phenotypes when exposed to different environmental conditions. While the benefits of plasticity for adaptation are well established, the costs associated with plasticity remain somewhat obscure. Understanding both why and how these costs arise could help us explain and predict the behavior of living creatures as well as allow the design of more adaptable robotic systems. One of the challenges of conducting such investigations concerns the difficulty of isolating the effects of different types of costs and the lack of control over environmental conditions. The present study addresses these challenges by using virtual worlds (software) to investigate the environmentally regulated phenotypic plasticity of digital organisms. The experimental setup guarantees that potential genetic costs of plasticity are isolated from other plasticity-related costs. Multiple populations of organisms endowed with and without phenotypic plasticity in either the body or the brain are evolved in simulation, and organisms must cope with different environmental conditions. The traits and fitness of the emergent organisms are compared, demonstrating cases in which plasticity is beneficial and cases in which it is neutral. The hypothesis put forward here is that the potential benefits of plasticity might be undermined by the genetic costs related to plasticity itself. The results suggest that this hypothesis is true, while further research is needed to guarantee that the observed effects unequivocally derive from genetic costs and not from some other (unforeseen) mechanism related to plasticity.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Adaptação Fisiológica/genética , Fenótipo , Genótipo , Simulação por Computador
4.
J Mol Evol ; 91(3): 311-324, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36752825

RESUMO

Following the completion of an adaptive evolution experiment, fitness evaluations are routinely conducted to assess the magnitude of adaptation. In doing so, proper consideration should be given when determining the appropriate methods as trade-offs may exist between accuracy and throughput. Here, we present three instances in which small changes in the framework or execution of fitness evaluations significantly impacted the outcomes. The first case illustrates that discrepancies in fitness conclusions can arise depending on the approach to evaluating fitness, the culture vessel used, and the sampling method. The second case reveals that variations in environmental conditions can occur associated with culture vessel material. Specifically, these subtle changes can greatly affect microbial physiology leading to changes in the culture pH and distorting fitness measurements. Finally, the last case reports that heterogeneity in CFU formation time can result in inaccurate fitness conclusions. Based on each case, considerations and recommendations are presented for future adaptive evolution experiments.


Assuntos
Aclimatação , Adaptação Fisiológica , Adaptação Fisiológica/genética , Aptidão Genética
5.
G3 (Bethesda) ; 12(9)2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35920784

RESUMO

The dynamics of adaptation, reversion, and compensation have been central topics in microbial evolution, and several studies have attempted to resolve the population genetics underlying how these dynamics occur. However, questions remain regarding how certain features-the evolution of mutators and whether compensatory mutations alleviate costs fully or partially-may influence the evolutionary dynamics of compensation and reversion. In this study, we attempt to explain findings from experimental evolution by utilizing computational and theoretical approaches toward a more refined understanding of how mutation rate and the fitness effects of compensatory mutations influence adaptive dynamics. We find that high mutation rates increase the probability of reversion toward the wild type when compensation is only partial. However, the existence of even a single fully compensatory mutation is associated with a dramatically decreased probability of reversion to the wild type. These findings help to explain specific results from experimental evolution, where compensation was observed in nonmutator strains, but reversion (sometimes with compensation) was observed in mutator strains, indicating that real-world compensatory mutations are often unable to fully alleviate the costs associated with adaptation. Our findings emphasize the potential role of the supply and quality of mutations in crafting the dynamics of adaptation and reversal, with implications for theoretical population genetics and for biomedical contexts like the evolution of antibiotic resistance.


Assuntos
Genética Populacional , Taxa de Mutação , Adaptação Fisiológica/genética , Evolução Molecular , Mutação
6.
Bioessays ; 44(8): e2200023, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35748194

RESUMO

Homologous centromeres compete for segregation to the secondary oocyte nucleus at female meiosis I. Centromeric repeats also compete with each other to populate centromeres in mitotic cells of the germline and have become adapted to use the recombinational machinery present at centromeres to promote their own propagation. Repeats are not needed at centromeres, rather centromeres appear to be hospitable habitats for the colonization and proliferation of repeats. This is probably an indirect consequence of two distinctive features of centromeric DNA. Centromeres are subject to breakage by the mechanical forces exerted by microtubules and meiotic crossing-over is suppressed. Centromeric proteins acting in trans are under selection to mitigate the costs of centromeric repeats acting in cis. Collateral costs of mitotic competition at centromeres may help to explain the high rates of aneuploidy observed in early human embryos.


Assuntos
Centrômero , Meiose , Adaptação Fisiológica/genética , Proliferação de Células , Ecossistema , Feminino , Humanos
7.
Ann Bot ; 130(2): 131-148, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35771883

RESUMO

BACKGROUND: Plastic responses of plants to the environment are ubiquitous. Phenotypic plasticity occurs in many forms and at many biological scales, and its adaptive value depends on the specific environment and interactions with other plant traits and organisms. Even though plasticity is the norm rather than the exception, its complex nature has been a challenge in characterizing the expression of plasticity, its adaptive value for fitness and the environmental cues that regulate its expression. SCOPE: This review discusses the characterization and costs of plasticity and approaches, considerations, and promising research directions in studying plasticity. Phenotypic plasticity is genetically controlled and heritable; however, little is known about how organisms perceive, interpret and respond to environmental cues, and the genes and pathways associated with plasticity. Not every genotype is plastic for every trait, and plasticity is not infinite, suggesting trade-offs, costs and limits to expression of plasticity. The timing, specificity and duration of plasticity are critical to their adaptive value for plant fitness. CONCLUSIONS: There are many research opportunities to advance our understanding of plant phenotypic plasticity. New methodology and technological breakthroughs enable the study of phenotypic responses across biological scales and in multiple environments. Understanding the mechanisms of plasticity and how the expression of specific phenotypes influences fitness in many environmental ranges would benefit many areas of plant science ranging from basic research to applied breeding for crop improvement.


Assuntos
Evolução Biológica , Sinais (Psicologia) , Adaptação Fisiológica/genética , Fenótipo , Plantas/genética
8.
Mol Biol Evol ; 39(5)2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35574643

RESUMO

Climatic variation is a key driver of genetic differentiation and phenotypic traits evolution, and local adaptation to temperature is expected in widespread species. We investigated phenotypic and genomic changes in the native range of the Asian tiger mosquito, Aedes albopictus. We first refine the phylogeographic structure based on genome-wide regions (1,901 double-digest restriction-site associated DNA single nucleotide polymophisms [ddRAD SNPs]) from 41 populations. We then explore the patterns of cold adaptation using phenotypic traits measured in common garden (wing size and cold tolerance) and genotype-temperature associations at targeted candidate regions (51,706 exon-capture SNPs) from nine populations. We confirm the existence of three evolutionary lineages including clades A (Malaysia, Thailand, Cambodia, and Laos), B (China and Okinawa), and C (South Korea and Japan). We identified temperature-associated differentiation in 15 out of 221 candidate regions but none in ddRAD regions, supporting the role of directional selection in detected genes. These include genes involved in lipid metabolism and a circadian clock gene. Most outlier SNPs are differently fixed between clades A and C, whereas clade B has an intermediate pattern. Females are larger at higher latitude yet produce no more eggs, which might favor the storage of energetic reserves in colder climate. Nondiapausing eggs from temperate populations survive better to cold exposure than those from tropical populations, suggesting they are protected from freezing damages but this cold tolerance has a fitness cost in terms of egg viability. Altogether, our results provide strong evidence for the thermal adaptation of A. albopictus across its wide temperature range.


Assuntos
Aedes , Aclimatação , Adaptação Fisiológica/genética , Aedes/genética , Animais , Temperatura Baixa , Feminino , Genômica
9.
Philos Trans R Soc Lond B Biol Sci ; 377(1848): 20210011, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35184593

RESUMO

Dispersal has three major effects on adaptation. First, gene flow mixes alleles adapted to different environments, potentially hindering (swamping) adaptation. Second, it brings in other variants and inflates genetic variance: this aids adaptation to spatially (and temporally) varying environments but if selection is hard, it lowers the mean fitness of the population. Third, neighbourhood size, which determines how weak genetic drift is, increases with dispersal-when genetic drift is strong, increase of the neighbourhood size with dispersal aids adaptation. In this note, I focus on the role of dispersal in environments that change gradually across space, and when local populations are quite small such that genetic drift has a significant effect. Using individual-based simulations, I show that in small populations, even leptokurtic dispersal benefits adaptation by reducing the power of genetic drift. This has implications for management of fragmented or marginal populations: the beneficial effect of increased dispersal into small populations is stronger than swamping of adaption under a broad range of conditions, including a mixture of local and long-distance dispersal. However, when environmental gradient is steep, heavily fat-tailed dispersal will swamp continuous adaptation so that only patches of locally adapted subpopulations remain. This article is part of the theme issue 'Species' ranges in the face of changing environments (Part II)'.


Assuntos
Deriva Genética , Humanos , Adaptação Fisiológica/genética , Análise Custo-Benefício , Fluxo Gênico
10.
Integr Zool ; 17(4): 567-580, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34254727

RESUMO

Trait specialization often comes at the expense of original trait function, potentially causing evolutionary tradeoffs that may render specialist populations vulnerable to extinction. However, many specialized adaptations evolve repeatedly, suggesting selection favors specialization in specific environments. Some garter snake (Thamnophis) populations possess specialized mutations in voltage-gated sodium channels that allow them to consume Pacific newts (Taricha) defended by a highly potent neurotoxin (tetrodotoxin). These mutations, however, also decrease protein and muscle function, suggesting garter snakes may suffer evolutionary tradeoffs. We measured a key physiological process, standard metabolic rate (SMR), to investigate whether specialized adaptations in toxin-resistant garter snakes affect baseline energy expenditure. In snakes, skeletal muscles influence metabolism and power ventilation, so inefficiencies of sodium channels in these muscles might impact whole-animal energy expenditure. Further, because sodium channels are membrane-bound proteins, inefficiencies of channel kinetics and performance might be exacerbated at suboptimal temperatures. We measured SMR in 2 species, Thamnophis atratus and Thamnophis sirtalis, that independently evolved tetrodotoxin resistance through unique mutations, providing replicate experiments with distinct underlying genetics and potential physiological costs. Despite our expectations, neither resistance phenotype nor sodium channel genotype affected metabolism and resistant snakes did not perform worse under suboptimal body temperature. Instead, T. atratus and T. sirtalis show nearly identical rates of mass-adjusted energy expenditure at both temperatures, despite differing eco-morphologies, life histories, and distant phylogenetic positions. These findings suggest SMR may be a conserved feature of Thamnophis, and that any organismal tradeoffs may be compensated to retain whole-animal function.


Assuntos
Colubridae , Adaptação Fisiológica/genética , Animais , Colubridae/genética , Filogenia , Canais de Sódio/genética , Canais de Sódio/metabolismo , Tetrodotoxina
11.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34799444

RESUMO

Construction economics of plant roots exhibit predictable relationships with root growth, death, and nutrient uptake strategies. Plant taxa with inexpensively constructed roots tend to more precisely explore nutrient hotspots than do those with costly constructed roots but at the price of more frequent tissue turnover. This trade-off underlies an acquisitive to conservative continuum in resource investment, described as the "root economics spectrum (RES)." Yet the adaptive role and genetic basis of RES remain largely unclear. Different ecotypes of switchgrass (Panicum virgatum) display root features exemplifying the RES, with costly constructed roots in southern lowland and inexpensively constructed roots in northern upland ecotypes. We used an outbred genetic mapping population derived from lowland and upland switchgrass ecotypes to examine the genetic architecture of the RES. We found that absorptive roots (distal first and second orders) were often "deciduous" in winter. The percentage of overwintering absorptive roots was decreased by northern upland alleles compared with southern lowland alleles, suggesting a locally-adapted conservative strategy in warmer and acquisitive strategy in colder regions. Relative turnover of absorptive roots was genetically negatively correlated with their biomass investment per unit root length, suggesting that the key trade-off in framing RES is genetically facilitated. We also detected strong genetic correlations among root morphology, root productivity, and shoot size. Overall, our results reveal the genetic architecture of multiple traits that likely impacts the evolution of RES and plant aboveground-belowground organization. In practice, we provide genetic evidence that increasing switchgrass yield for bioenergy does not directly conflict with enhancing its root-derived carbon sequestration.


Assuntos
Genética Populacional , Poaceae/genética , Poaceae/metabolismo , Adaptação Fisiológica/genética , Alelos , Ecótipo , Panicum/genética , Fenótipo , Raízes de Plantas/metabolismo
12.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34373331

RESUMO

Do animals set the course for the evolution of their lineage when manipulating their environment? This heavily disputed question is empirically unexplored but critical to interpret phenotypic diversity. Here, we tested whether the macroevolutionary rates of body morphology correlate with the use of built artifacts in a megadiverse clade comprising builders and nonbuilders-spiders. By separating the inferred building-dependent rates from background effects, we found that variation in the evolution of morphology is poorly explained by artifact use. Thus natural selection acting directly on body morphology rather than indirectly via construction behavior is the dominant driver of phenotypic diversity.


Assuntos
Adaptação Fisiológica/genética , Comportamento Animal/fisiologia , Simulação por Computador , Modelos Biológicos , Aranhas/fisiologia , Animais , Evolução Biológica , Cadeias de Markov , Método de Monte Carlo , Aranhas/genética
13.
Anim Genet ; 52(1): 126-131, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33107621

RESUMO

Russian sheep breeds represent an important economic asset by providing meat and wool, whilst being adapted to extreme climates. By resequencing two Russian breeds from Siberia: Tuva (n = 20) and Baikal (n = 20); and comparing them with a European (UK) sheep outgroup (n = 14), 41 million variants were called, and signatures of selection were identified. High-frequency missense mutations on top of selection peaks were found in genes related to immunity (LOC101109746) in the Baikal breed and wool traits (IDUA), cell differentiation (GLIS1) and fat deposition (AADACL3) in the Tuva breed. In addition, genes found under selection owing to haplotype frequency changes were related to wool traits (DSC2), parasite resistance (CLCA1), insulin receptor pathway (SOCS6) and DNA repair (DDB2) in the Baikal breed, and vision (GPR179) in the Tuva breed. Our results present candidate genes and SNPs for future selection programmes, which are necessary to maintain and increase socioeconomic gain from Siberian breeds.


Assuntos
Adaptação Fisiológica/genética , Ovinos/genética , Animais , Cruzamento , Mutação de Sentido Incorreto , Fenótipo , Polimorfismo de Nucleotídeo Único , Sibéria
14.
Proc Natl Acad Sci U S A ; 117(51): 32557-32565, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33277433

RESUMO

Western South America was one of the worldwide cradles of civilization. The well-known Inca Empire was the tip of the iceberg of an evolutionary process that started 11,000 to 14,000 years ago. Genetic data from 18 Peruvian populations reveal the following: 1) The between-population homogenization of the central southern Andes and its differentiation with respect to Amazonian populations of similar latitudes do not extend northward. Instead, longitudinal gene flow between the northern coast of Peru, Andes, and Amazonia accompanied cultural and socioeconomic interactions revealed by archeology. This pattern recapitulates the environmental and cultural differentiation between the fertile north, where altitudes are lower, and the arid south, where the Andes are higher, acting as a genetic barrier between the sharply different environments of the Andes and Amazonia. 2) The genetic homogenization between the populations of the arid Andes is not only due to migrations during the Inca Empire or the subsequent colonial period. It started at least during the earlier expansion of the Wari Empire (600 to 1,000 years before present). 3) This demographic history allowed for cases of positive natural selection in the high and arid Andes vs. the low Amazon tropical forest: in the Andes, a putative enhancer in HAND2-AS1 (heart and neural crest derivatives expressed 2 antisense RNA1, a noncoding gene related to cardiovascular function) and rs269868-C/Ser1067 in DUOX2 (dual oxidase 2, related to thyroid function and innate immunity) genes and, in the Amazon, the gene encoding for the CD45 protein, essential for antigen recognition by T and B lymphocytes in viral-host interaction.


Assuntos
Adaptação Fisiológica/genética , Indígenas Sul-Americanos/genética , Altitude , Civilização , Clima , Oxidases Duais/genética , Fluxo Gênico , Frequência do Gene , Genética Populacional , Humanos , Antígenos Comuns de Leucócito/genética , Peru/etnologia , Polimorfismo de Nucleotídeo Único , RNA Longo não Codificante/genética , Floresta Úmida , Seleção Genética , Fatores Socioeconômicos , Proteínas com Domínio T/genética
15.
Theor Appl Genet ; 133(8): 2431-2450, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32451598

RESUMO

KEY MESSAGE: We developed and validated 56 gene-specific semi-thermal asymmetric reverse PCR (STARP) markers for 46 genes of important wheat quality, biotic and abiotic stress resistance, grain yield, and adaptation-related traits for marker-assisted selection in wheat breeding. Development of high-throughput, low-cost, gene-specific molecular markers is important for marker-assisted selection in wheat breeding. In this study, we developed 56 gene-specific semi-thermal asymmetric reverse PCR (STARP) markers for wheat quality, tolerance to biotic and abiotic stresses, grain yield, and adaptation-related traits. The STARP assays were validated by (1) comparison of the assays with corresponding diagnostic STS/CAPS markers on 40 diverse wheat cultivars and (2) characterization of allelic effects based on the phenotypic and genotypic data of three segregating populations and 305 diverse wheat accessions from China and 13 other countries. The STARP assays showed the advantages of high-throughput, accuracy, flexibility, simple assay design, low operational costs, and platform compatibility. The state-of-the-art assays of this study provide a robust and reliable molecular marker toolkit for wheat breeding programs.


Assuntos
Adaptação Fisiológica/genética , Mapeamento Cromossômico/métodos , Melhoramento Vegetal/métodos , Reação em Cadeia da Polimerase/métodos , Triticum/genética , Alelos , Farinha/normas , Genes de Plantas , Marcadores Genéticos , Genótipo , Germinação , Fenótipo , Locos de Características Quantitativas , Plântula/genética , Plântula/crescimento & desenvolvimento , Sementes/genética , Sementes/fisiologia , Triticum/crescimento & desenvolvimento , Triticum/metabolismo
16.
Fish Physiol Biochem ; 46(1): 395-403, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31748988

RESUMO

Fluorescent protein (FP) transgenesis is used in the ornamental aquarium trade to produce new colour morphs in tropical fish. Understanding whether such genetic modification could alter ability to survive temperate waters, or interactions with native fish, should such fish be released to natural systems is critical in developing policy on their commercial use. We examined the competitive foraging ability and cold tolerance of unrelated pet-trade sourced adult green FP transgenic tetra and non-transgenic white tetra (Gymnocorymbus ternetzi), as well as white non-transgenic and green FP transgenic juvenile progeny of these groups. FP transgenesis did not affect the foraging success or aggressive behaviour in either adult or juvenile fish, indicating FP transgenesis may not influence potential hazards through this pathway. During a cold temperature tolerance trial, adult green tetras had greatly diminished cold tolerance relative to unrelated adult white fish, while sibling juvenile offspring of these groups had intermediate cold tolerance between adult fish groups that were not affected by FP transgenesis. This data suggests background genetics, rearing history and/or life stage may play larger roles in cold tolerance than FP transgenesis in this species. Unexpectedly, both adult and juvenile white tetras were 3.8 times more likely to take refuge in shelters when temperature declined than green tetras. These data indicate FP transgenic fish may pose equal or lesser risk than non-transgenic fish, should they be released to natural environments. Results also demonstrate that unrelated pet-trade sourced fish may not always be appropriate models for examining effects of FP transgenesis.


Assuntos
Adaptação Fisiológica/genética , Comportamento Animal , Characidae/genética , Characidae/fisiologia , Temperatura Baixa , Proteínas de Fluorescência Verde/genética , Animais , Animais Geneticamente Modificados , Proteínas de Fluorescência Verde/metabolismo
17.
Trends Genet ; 36(1): 14-23, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31699305

RESUMO

What prevents generalists from displacing specialists, despite obvious competitive advantages of utilizing a broad niche? The classic genetic explanation is antagonistic pleiotropy: genes underlying the generalism produce 'jacks-of-all-trades' that are masters of none. However, experiments challenge this assumption that mutations enabling niche expansion must reduce fitness in other environments. Theory suggests an alternative cost of generalism: decreased evolvability, or the reduced capacity to adapt. Generalists using multiple environments experience relaxed selection in any one environment, producing greater relative lag load. Additionally, mutations fixed by generalist lineages early during their evolution that avoid or compensate for antagonistic pleiotropy may limit access to certain future evolutionary trajectories. Hypothesized evolvability costs of generalism warrant further exploration, and we suggest outstanding questions meriting attention.


Assuntos
Evolução Biológica , Aptidão Genética/genética , Pleiotropia Genética/genética , Seleção Genética/genética , Adaptação Fisiológica/genética , Interação Gene-Ambiente , Mutação
18.
BMC Genomics ; 20(1): 711, 2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31514727

RESUMO

BACKGROUND: The black-lip rock oyster (Saccostrea echinata) has considerable potential for aquaculture throughout the tropics. Previous attempts to farm S. echinata failed due to an insufficient supply of wild spat; however, the prospect of hatchery-based aquaculture has stimulated renewed interest, and small-scale farming is underway across northern Australia and in New Caledonia. The absence of knowledge surrounding the population genetic structure of this species has raised concerns about the genetic impacts of this emerging aquaculture industry. This study is the first to examine population genetics of S. echinata and employs both mitochondrial cytochrome c oxidase subunit I gene (COI) and single nucleotide polymorphism (SNP) markers. RESULTS: The mitochondrial COI data set included 273 sequences of 594 base pair length, which comprised 74 haplotypes. The SNP data set included 27,887 filtered SNPs for 272 oysters and of these 31 SNPs were identified as candidate adaptive loci. Data from the mitochondrial COI analyses, supports a broad tropical Indo-Pacific distribution of S. echinata, and showed high haplotype and nucleotide diversities (0.887-1.000 and 0.005-0.008, respectively). Mitochondrial COI analyses also revealed a 'star-like' haplotype network, and significant and negative neutrality tests (Tajima's D = - 2.030, Fu's Fs = - 25.638, P < 0.001) support a recent population expansion after a bottleneck. The SNP analyses showed significant levels of population subdivision and four genetic clusters were identified: (1) the Noumea (New Caledonia) sample location; (2) the Bowen (north Queensland, Australia) sample location, and remaining sample locations in the Northern Territory, Australia (n = 8) were differentiated into two genetic clusters. These occurred at either side of the Wessel Islands and were termed (3) 'west' and (4) 'east' clusters, and two migrant individuals were detected between them. The SNP data showed a significant positive correlation between genetic and geographic distance (Mantel test, P < 0.001, R2 = 0.798) and supported isolation by distance. Three candidate adaptive SNPs were identified as occurring within known genes and gene ontology was well described for the sex peptide receptor gene. CONCLUSIONS: Data supports the existence of genetically distinct populations of S. echinata, suggesting that management of wild and farmed stocks should be based upon multiple management units. This research has made information on population genetic structure and connectivity available for a new aquaculture species.


Assuntos
Aquicultura , Núcleo Celular/genética , DNA Mitocondrial/genética , Ostreidae/genética , Desenvolvimento Sustentável , Adaptação Fisiológica/genética , Animais , Técnicas de Genotipagem , Anotação de Sequência Molecular , Ostreidae/fisiologia , Polimorfismo de Nucleotídeo Único
20.
PLoS Comput Biol ; 15(7): e1007169, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31339876

RESUMO

Syntrophy allows a microbial community as a whole to survive in an environment, even though individual microbes cannot. The metabolic interdependence typical of syntrophy is thought to arise from the accumulation of degenerative mutations during the sustained co-evolution of initially self-sufficient organisms. An alternative and underexplored possibility is that syntrophy can emerge spontaneously in communities of organisms that did not co-evolve. Here, we study this de novo origin of syntrophy using experimentally validated computational techniques to predict an organism's viability from its metabolic reactions. We show that pairs of metabolisms that are randomly sampled from a large space of possible metabolism and viable on specific primary carbon sources often become viable on new carbon sources by exchanging metabolites. The same biochemical reactions that are required for viability on primary carbon sources also confer viability on novel carbon sources. Our observations highlight a new and important avenue for the emergence of metabolic adaptations and novel ecological interactions.


Assuntos
Redes e Vias Metabólicas , Microbiota/fisiologia , Modelos Biológicos , Simbiose/fisiologia , Adaptação Fisiológica/genética , Algoritmos , Carbono/metabolismo , Biologia Computacional , Escherichia coli/genética , Escherichia coli/metabolismo , Cadeias de Markov , Microbiota/genética , Método de Monte Carlo , Mutação , Simbiose/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA