Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.033
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Environ Health Perspect ; 132(5): 56001, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38728217

RESUMO

BACKGROUND: Respiratory tract infections are major contributors to the global disease burden. Quantitative microbial risk assessment (QMRA) holds potential as a rapidly deployable framework to understand respiratory pathogen transmission and inform policy on infection control. OBJECTIVES: The goal of this paper was to evaluate, motivate, and inform further development of the use of QMRA as a rapid tool to understand the transmission of respiratory pathogens and improve the evidence base for infection control policies. METHODS: We conducted a literature review to identify peer-reviewed studies of complete QMRA frameworks on aerosol inhalation or contact transmission of respiratory pathogens. From each of the identified studies, we extracted and summarized information on the applied exposure model approaches, dose-response models, and parameter values, including risk characterization. Finally, we reviewed linkages between model outcomes and policy. RESULTS: We identified 93 studies conducted in 16 different countries with complete QMRA frameworks for diverse respiratory pathogens, including SARS-CoV-2, Legionella spp., Staphylococcus aureus, influenza, and Bacillus anthracis. Six distinct exposure models were identified across diverse and complex transmission pathways. In 57 studies, exposure model frameworks were informed by their ability to model the efficacy of potential interventions. Among interventions, masking, ventilation, social distancing, and other environmental source controls were commonly assessed. Pathogen concentration, aerosol concentration, and partitioning coefficient were influential exposure parameters as identified by sensitivity analysis. Most (84%, n=78) studies presented policy-relevant content including a) determining disease burden to call for policy intervention, b) determining risk-based threshold values for regulations, c) informing intervention and control strategies, and d) making recommendations and suggestions for QMRA application in policy. CONCLUSIONS: We identified needs to further the development of QMRA frameworks for respiratory pathogens that prioritize appropriate aerosol exposure modeling approaches, consider trade-offs between model validity and complexity, and incorporate research that strengthens confidence in QMRA results. https://doi.org/10.1289/EHP12695.


Assuntos
Infecções Respiratórias , Medição de Risco/métodos , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/microbiologia , Humanos , SARS-CoV-2 , COVID-19/transmissão , COVID-19/prevenção & controle , Staphylococcus aureus , Controle de Infecções/métodos , Legionella , Aerossóis
2.
Sci Total Environ ; 927: 172278, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583631

RESUMO

The Wells-Riley model is extensively used for retrospective and prospective modelling of the risk of airborne transmission of infection in indoor spaces. It is also used when examining the efficacy of various removal and deactivation methods for airborne infectious aerosols in the indoor environment, which is crucial when selecting the most effective infection control technologies. The problem is that the large variation in viral load between individuals makes the Wells-Riley model output very sensitive to the input parameters and may yield a flawed prediction of risk. The absolute infection risk estimated with this model can range from nearly 0 % to 100 % depending on the viral load, even when all other factors, such as removal mechanisms and room geometry, remain unchanged. We therefore propose a novel method that removes this sensitivity to viral load. We define a quanta-independent maximum absolute before-after difference in infection risk that is independent of quanta factors like viral load, physical activity, or the dose-response relationships. The input data needed for a non-steady-state calculation are just the removal rates, room volume, and occupancy duration. Under steady-state conditions the approach provides an elegant solution that is only dependent on removal mechanisms before and after applying infection control measures. We applied this method to compare the impact of relative humidity, ventilation rate and its effectiveness, filtering efficiency, and the use of ultraviolet germicidal irradiation on the infection risk. The results demonstrate that the method provides a comprehensive understanding of the impact of infection control strategies on the risk of airborne infection, enabling rational decisions to be made regarding the most effective strategies in a specific context. The proposed method thus provides a practical tool for mitigation of airborne infection risk.


Assuntos
Microbiologia do Ar , Poluição do Ar em Ambientes Fechados , Humanos , Poluição do Ar em Ambientes Fechados/prevenção & controle , Aerossóis/análise , COVID-19/prevenção & controle , COVID-19/transmissão , Ventilação , Carga Viral , Modelos Teóricos , Controle de Infecções/métodos , Medição de Risco
3.
J Radiol Prot ; 44(2)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38632901

RESUMO

The high radon concentrations measured in the indoor air of groundwater facilities and the prevalence of the problem have been known for several years. Unlike in other workplaces, in groundwater plants, radon is released into the air from the water treatment processes. During the measurements of this study, the average radon concentrations varied from 500 to 8800 Bq m-3. In addition, the indoor air of the treatment plants is filtered and there are no significant internal aerosol sources. However, only a few published studies on groundwater plants have investigated the properties of the radon progeny aerosol, such as the equilibrium factor (F) or the size distribution of the aerosol, which are important for assessing the dose received by workers. Moreover, the International Commission on Radiological Protection has not provided generic aerosol parameter values for dose assessment in groundwater treatment facilities. In this study, radon and radon progeny measurements were carried out at three groundwater plants. The results indicate surprisingly high unattached fractions (fp= 0.27-0.58), suggesting a low aerosol concentration in indoor air. The correspondingFvalues were 0.09-0.42, well below those measured in previous studies. Based on a comparison of the effective dose rate calculations, either the determination of thefpor, with certain limitations, the measurement of radon is recommended. Dose rate calculation based on the potential alpha energy concentration alone proved unreliable.


Assuntos
Poluentes Radioativos do Ar , Poluição do Ar em Ambientes Fechados , Água Subterrânea , Monitoramento de Radiação , Radônio , Humanos , Produtos de Decaimento de Radônio/análise , Poluentes Radioativos do Ar/análise , Radônio/análise , Aerossóis , Monitoramento de Radiação/métodos , Poluição do Ar em Ambientes Fechados/análise
4.
Anal Methods ; 16(14): 2111-2119, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38516815

RESUMO

Microfluidic-based assessment platforms have recently attracted considerable attention and have been widely used for evaluating in vitro toxic effects. In the present study, we developed an original real-time aerosol exposure system, which focused on a self-designed microfluidic chip, in order to evaluate the toxicological effects following exposure to inhalable aerosols. The three-layer structured microfluidic chip enables real-time aerosol exposure at the gas-liquid interface. The comprehensive detection of toxic effect biomarkers based on this assessment platform encompasses transcriptomics, in situ fluorescence detection, and the identification of extracellular secretagogues. Correspondingly, the effects of selected inhalable aerosols such as cigarette smoke (CS), heated tobacco product smoke (HS), and electronic cigarette smoke (ES) on gene expression profiles, cell viability, intracellular biomarkers (reactive oxygen species and nitric oxide), apoptosis (caspase-3/7 activity), and extracellular biomarkers (IL-8, IL-1ß, TNF-α, and malondialdehyde) in the BEAS-2B cells present on the chip were investigated. Following exposure to aerosols derived from CS, HS, and ES, the transcriptome analysis revealed differential expression in these cells. In addition, the overlapping DEGs from the different treatment groups were found to be primarily associated with stimuli and inflammatory responses. Correspondingly, each of the three categories of selected inhalable aerosols was confirmed to induce significant changes in biomarkers that were associated with toxic effects. These results suggest that the original real-time aerosol exposure system centered around a self-designed chip can be applied to the toxic effect evaluation of inhalable aerosol exposure.


Assuntos
Aerossóis , Biomarcadores , Microfluídica , Poluição por Fumaça de Tabaco , Aerossóis/toxicidade , Sistemas Eletrônicos de Liberação de Nicotina , Poluição por Fumaça de Tabaco/efeitos adversos , Humanos , Linhagem Celular
5.
Water Res ; 254: 121359, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38428237

RESUMO

Pathogenic microorganisms can cause infection, sepsis, and other diseases in humans. Although municipal wastewater plants are important sources and sinks for potential pathogenic microorganisms, data on rural wastewater treatment processes are limited. The proximity of rural wastewater facilities to human settlements and the trend toward wastewater resourcing could pose risks to humans. Here, a typical village in southern China was selected to analyze potential pathogenic microorganisms in wastewater, sewage sludge, and aerosols during the collection, treatment, and discharge of domestic wastewater. The succession characteristics and concentration variations of potential pathogenic microorganisms throughout the wastewater treatment process were identified using high-throughput sequencing and culture methods. Bacteria-associated health risks in facility aerosols were estimated based on average daily dose rates from inhalation and dermal exposure. Lower amounts of pathogenic bacteria and pathogenic fungi were detected in the effluent of the 1-ton treatment scale and the 10-ton treatment scale facilities, compared to those in the influent. Pathogen effluent concentrations were significantly lower than influent concentrations after treatment in rural wastewater facilities. 16 and 29 potential pathogenic bacteria and fungi were detected in aerosols from wastewater treatment facilities, respectively. Furthermore, the potential pathogen concentrations were higher than those in the background air. Aerobic units are the main source of pathogen emissions from aerosols. There were 42 potential pathogenic bacteria and 34 potential pathogenic fungi in the sewage sludge. Biochemical units were the main source of potential pathogens in sewage sludge, and more potential airborne pathogens originated from wastewater. In rural wastewater resourcing processes with greater pollutant exposure, the effluent of rural wastewater treatment facilities (WWTFs), downstream rivers, and facility aerosols, could be important potential sources of microbial risk. Inhalation is the main pathway of human exposure to airborne bacteria. Therefore, more attention should be focused on microbiological risk in rural wastewater treatment processes.


Assuntos
Águas Residuárias , Purificação da Água , Humanos , Esgotos/microbiologia , Microbiologia do Ar , Medição de Risco , Bactérias , Aerossóis , Fungos
6.
Environ Int ; 185: 108502, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38368717

RESUMO

The tobacco emission condensate, henceforth referred to as "tobacco condensate," plays a critical role in assessing the toxicity of tobacco products. This condensate, derived from tobacco emissions, provides an optimized liquid concentrate for storage and concentration control. Thus, the validation of its constituents is vital for toxicity assessments. This study used tobacco condensates from 3R4F cigarettes and three heated tobacco product (HTP) variants to quantify and contrast organic compounds (OCs) therein. The hazard index (HI) for tobacco emissions and condensates was determined to ascertain the assessment validity. The total particulate matter (TPM) for 3R4F registered at 17,667 µg cig-1, with its total OC (TOC) at 3777 µg cig-1. HTPs' TPM and TOC were 9342 ± 1918 µg cig-1 and 5258 ± 593 µg stick-1, respectively. 3R4F's heightened TPM likely arises from tar, while HTPs' OC concentrations are influenced by vegetable glycerin (2236-2688 µg stick-1) and propylene glycol (589-610 µg stick-1). During the condensation process, a substantial proportion of OCs in 3R4F smoke underwent significant concentration decreases, in contrast to HTPs, where fewer than half of the examined OCs exhibited notable concentration declines. The HI for tobacco emissions exhibited a marginally higher value compared to tobacco condensate, with variations ranging from 7.92% (HTPs) to 18.6% (3R4F), denoting a minimal differential. These observations emphasize the importance of accurate OC recovery techniques to maintain the validity and reliability of toxicity assessments based on tobacco condensates. This study not only deepens the comprehension of chemical behaviors in tobacco products but also establishes a novel benchmark for their toxicity evaluation, with profound implications for public health strategies and consumer protection.


Assuntos
Produtos do Tabaco , Aerossóis/análise , Material Particulado/toxicidade , Material Particulado/química , Reprodutibilidade dos Testes , Fumaça , Produtos do Tabaco/análise
7.
Toxicol Lett ; 393: 107-113, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38350531

RESUMO

In the absence of epidemiological data, there is a need to develop computational models that convert in vitro findings to human disease risk predictions following toxicant exposure. In such efforts, in vitro data can be evaluated in the context of adverse outcome pathways (AOPs) that organize mechanistic knowledge based on empirical evidence into a sequence of molecular-, cellular-, tissue-, and organ-level key events that precede an adverse outcome (AO). Here we combined data from advanced in vitro organotypic airway models exposed to combustible cigarette (CC) smoke or Tobacco Heating System (THS) aerosol with an AOP for increased oxidative stress leads to decreased lung function. The mathematical modeling predicted reduced risk of decreased ciliary beating frequency (CBF) based on oxidative stress measurements and reduced risk of decreased mucociliary clearance (MCC) based on CBF measurements in THS aerosol- compared with CC smoke-exposed cultures. To extend the predictions to the AO of decreased lung function, we leveraged human MCC data from current smokers, nonsmokers, former smokers, and users of heated tobacco products. This approach provided a plausible prediction of diminished reduction in lung function in response to THS use compared with continued smoking. The current approach may also present a basis for an integrated approach to testing and assessment of tobacco products for future regulatory decision-making.


Assuntos
Rotas de Resultados Adversos , Produtos do Tabaco , Humanos , Produtos do Tabaco/toxicidade , Fumaça/efeitos adversos , Medição de Risco , Pulmão/metabolismo , Aerossóis
8.
Microbiology (Reading) ; 170(1)2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38180461

RESUMO

Group A streptococcus (GAS) infections result in more than 500 000 deaths annually. Despite mounting evidence for airborne transmission of GAS, little is known about its stability in aerosol. Measurements of GAS airborne stability were carried out using the Controlled Electrodynamic Levitation and Extraction of Bioaerosols onto a Substrate (CELEBS) instrument. CELEBS measurements with two different isolates of GAS suggest that it is aerostable, with approximately 70 % of bacteria remaining viable after 20 min of levitation at 50 % relative humidity (RH), with lower survival as RH was reduced. GAS airborne viability loss was driven primarily by desiccation and efflorescence (i.e. salt crystallization), with high pH also potentially playing a role, given reduced survival in bicarbonate containing droplet compositions. At low enough RH for efflorescence to occur, a greater proportion of organic components in the droplet appeared to protect the bacteria from efflorescence. These first insights into the aerosol stability of GAS indicate that airborne transmission of these respiratory tract bacteria may occur, and that both the composition of the droplet containing the bacteria, and the RH of the air affect the duration of bacterial survival in this environment. Future studies will explore a broader range of droplet and air compositions and include a larger selection of GAS strains.


Assuntos
Cloreto de Sódio , Streptococcus pyogenes , Aerossóis
9.
Ann Work Expo Health ; 68(2): 192-202, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38156674

RESUMO

Healthcare personnels (HCPs) are at risk of respiratory infectious diseases during patient care activities. HCPs rely primarily on personal protective equipment to prevent pathogen exposures, but there is a need to develop alternative, or complementary control strategies, including engineering controls. The objective of this study was to evaluate the ability of the 3 designs (denoted D1A, D1B, and D2) of the University of Utah Containment Ventilation for Exposure Reduction (U-COVER), a protective barrier enclosure device to contain respirable aerosols when placed over a simulated patient. The 2 primary performance metrics were the percent reduction in: (i) the concentration of respirable aerosols in the simulated breathing zone of an HCP, and (ii) surface contamination outside the device, which were tested using salt aerosols and fluorescein aerosols, respectively. Briefly, salt or fluorescein aerosols were generated as though expelled by a prone patient under 3 conditions: (i) no device (control), (ii) with the device but without exhaust ventilation, and (iii) with the device with exhaust ventilation. Device D2 was also tested under simulated use conditions, in which cardboard "arms" were placed inside the device ports. All 3 device designs showed the ability to reduce particle concentrations in the simulated HCP breathing zone and on surfaces by >99% with exhaust ventilation compared to the control condition. Without exhaust ventilation, device performance was lower and highly variable. Under simulated use conditions, device D2 reduced particle concentrations in the simulated HCP breathing zone by ≥91% and on surfaces by >99% relative to control for all combinations of "arms" tested. The U-COVER device demonstrates excellent aerosol containment and warrants further testing with dynamic simulated or actual use conditions.


Assuntos
Exposição Ocupacional , Humanos , Exposição Ocupacional/análise , Aerossóis e Gotículas Respiratórios , Aerossóis , Equipamento de Proteção Individual , Fluoresceínas
10.
Environ Pollut ; 343: 123208, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38142028

RESUMO

The study's primary focus lies in examining the relationship between respiratory and deposition doses of bacterial aerosols in urban kindergarten, providing valuable insights into the specific doses absorbed by individuals in different sections of their respiratory systems based on the aerodynamic diameter of bacterial particles. Samples were collected twice a week, using by an Andersen cascade impactor during autumn and winter seasons 2018/2019 resulting in a total of 1152 Petri dishes analyzed. The highest average concentration of bacterial aerosol was observed during autumn (1698 ± 663 CFU/m3) in comparison to winter months (723 ± 134 CFU/m3). Respirable doses for children and staff were 2945 and 2441 CFU/day during winter and 5988 and 4964 CFU/day during autumn, respectively. Deposition doses incorporated from empirical models for regional deposition in the respiratory tract showed that children in kindergarten absorb 33% less of bacteria into alveolar region if breath by nose instead of mouth. Additionally, risk assessment results indicate that the hazard indices for children attending kindergartens for 3 years and for staff working 25 years are below 1, suggesting minor risks associated with the inhalation of bioaerosols during autumn and winter. HI was <1, so the non-carcinogenic effects are on an acceptable level, but the indoor/outdoor ratio were 3.5 and 2.4 for autumn and winter, respectively, indicating children's and adult's exposure to bacterial aerosol should be reduced.


Assuntos
Bactérias , Instituições Acadêmicas , Criança , Humanos , Tamanho da Partícula , Polônia , Aerossóis/análise , Microbiologia do Ar , Monitoramento Ambiental/métodos
11.
Zhonghua Jie He He Hu Xi Za Zhi ; 46(12): 1254-1260, 2023 Dec 12.
Artigo em Chinês | MEDLINE | ID: mdl-38044055

RESUMO

Bioaerosols in healthcare facilities are closely related to the health of medical staff and patients. Inhalation of microbial aerosol particles can lead to both infectious and non-infectious diseases. However, a systematic summary of bioaerosol types, sources, impact factors and health risk analysis is lacking.This article condutcted a literature review to understand the distribution characteristics, sources, influencing factors and health risks of bioaerosols in healthcare facilities, both domestically and internationally. The goal is to increase awareness of the distribution characteristics of bioaerosols in healthcare facilities and health risk of bioaerosols in medical institutions. This article also provides a reference for prevention and control of bioaerosols.


Assuntos
Microbiologia do Ar , Humanos , Medição de Risco , Aerossóis/efeitos adversos
12.
Environ Sci Process Impacts ; 25(12): 2157-2166, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37966351

RESUMO

The purpose of this study was to assess the utility of a low-cost flow simulation tool for an indoor air modeling application by comparing its outputs with the results of a physical experiment, as well as those from a more advanced computational fluid dynamics (CFD) software package. Five aerosol dispersion tests were performed in two different classrooms by releasing a CO2 tracer gas from six student locations. Resultant steady-state concentrations were monitored at 13 locations around the periphery of the room. Subsequently, the experiments were modeled using both a low-cost tool (SolidWorks Flow Simulation) and a more sophisticated tool (STAR-CCM+). Models were evaluated based on their ability to predict the experimentally measured concentrations at the 13 monitoring locations by calculating four performance parameters commonly used in the evaluation of dispersion models: fractional mean bias (FB), normalized mean-square error (NMSE), fraction of predicted value within a factor of two (FAC2), and normalized absolute difference (NAD). The more sophisticated model performed better in 15 of the 20 possible cases (five tests at four parameters each), with parameters meeting acceptance criteria in 19 of 20 cases. However, the lower-cost tool was only slightly worse, with parameters meeting acceptance criteria in 18 of 20 cases, and it performed better than the other tool in 3 of 20 cases. Because it provides useful results at a fraction of the monetary and training cost and is already widely accessible to many institutions, such a tool may be worthwhile for many indoor aerosol dispersion applications, especially for students or researchers just beginning CFD modeling.


Assuntos
Hidrodinâmica , Modelos Teóricos , Humanos , Simulação por Computador , Aerossóis
13.
Toxicology ; 500: 153683, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38013136

RESUMO

Scientific progress and ethical considerations are increasingly shifting the toxicological focus from in vivo animal models to in vitro studies utilizing physiologically relevant cell cultures. Consequently, we evaluated and validated a three-dimensional (3D) model of the human lung using Calu-3 cells cultured at an air-liquid interface (ALI) for 28 days. Assessment of seven essential genes of differentiation and transepithelial electrical resistance (TEER) measurements, in conjunction with mucin (MUC5AC) staining, validated the model. We observed a time-dependent increase in TEER, genetic markers of mucus-producing cells (muc5ac, muc5b), basal cells (trp63), ciliated cells (foxj1), and tight junctions (tjp1). A decrease in basal cell marker krt5 levels was observed. Subsequently, we utilized this validated ALI-cultured Calu-3 model to investigate the adversity of the aerosols generated from three flavored electronic cigarette (EC) e-liquids: cinnamon, vanilla tobacco, and hazelnut. These aerosols were compared against traditional cigarette smoke (3R4F) to assess their relative toxicity. The aerosols generated from PG/VG vehicle control, hazelnut and cinnamon e-liquids, but not vanilla tobacco, significantly decreased TEER and increased lactate dehydrogenase (LDH) release compared to the incubator and air-only controls. Compared to 3R4F, there were no significant differences in TEER or LDH with the tested flavored EC aerosols other than vanilla tobacco. This starkly contrasted our expectations, given the common perception of e-liquids as a safer alternative to cigarettes. Our study suggests that these results depend on flavor type. Therefore, we strongly advocate for further research, increased user awareness regarding flavors in ECs, and rigorous regulatory scrutiny to protect public health.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Animais , Humanos , Aerossóis/toxicidade , Aromatizantes/toxicidade , Pulmão , Nicotina
14.
Environ Res ; 239(Pt 2): 117246, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37806474

RESUMO

BACKGROUND: The spatiotemporal and demographic disparities in exposure to ultrafine particles (UFP; number concentrations of particulate matter (PM) with diameter ≤0.1 µm), a key subcomponent of fine aerosols (PM2.5; mass concentrations of PM ≤ 2.5 µm), have not been well studied. OBJECTIVE: To quantify and compare the aerosol pollutant exposure disparities for UFP and PM2.5 by socio-demographic factors in New York State (NYS). METHODS: Ambient atmospheric UFP and PM2.5 were quantified using a global three-dimensional model of chemical transport with state-of-the-science aerosol microphysical processes validated extensively with observations. We matched these to U.S. census demographic data for varied spatial scales (state, county, county subdivision) and derived population-weighted aerosol exposure estimates. Aerosol exposure disparities for each demographic and socioeconomic (SES) indicator, with a focus on race-ethnicity and income, were quantified for the period 2013-2020. RESULTS: The average NYS resident was exposed to 4451 #·cm-3 UFP and 7.87 µg·m-3 PM2.5 in 2013-2020, but minority race-ethnicity groups were invariably exposed to greater daily aerosol pollution (UFP: +75.0% & PM2.5: +16.2%). UFP has increased since 2017 and is temporally and seasonally out-of-phase with PM2.5. Race-ethnicity exposure disparities for PM2.5 have declined over time; by -6% from 2013 to 2017 and plateaued thereafter despite its decreasing concentrations. In contrast, these disparities have increased (+12.5-13.5%) for UFP. The aerosol pollution exposure disparities were the highest for low-income minorities and were more amplified for UFP than PM2.5. DISCUSSION: We identified large disparities in aerosol pollution exposure by urbanization level and socio-demographics in NYS residents. Jurisdictions with higher proportions of race-ethnicity minorities, low-income residents, and greater urbanization were disproportionately exposed to higher concentrations of UFP and PM2.5 than other NYS residents. These race-ethnicity exposure disparities were much larger, more disproportionate, and unabating over time for UFP compared to PM2.5 across various income strata and levels of urbanicity.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Material Particulado/análise , Poluentes Atmosféricos/análise , New York , Monitoramento Ambiental/métodos , Exposição Ambiental/análise , Aerossóis/análise , Demografia , Poluição do Ar/análise
15.
AAPS PharmSciTech ; 24(7): 208, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37817001

RESUMO

Although nasal inhalation products are becoming more and more important for the delivery of medicines, characterization of these products for quality control and assessment of bioequivalence is complicated. Most of the problems encountered are associated with the assessment of aerodynamic droplet/particle size distribution (APSD). The droplets produced by the various nasal devices are large, and for suspension products, individual droplets may contain multiple drug particles or none at all. Assessment of suspension products is further complicated by the presence of solid excipient particles. These complications make it imperative that the limitations of the instruments used for characterization as well as the underlying assumptions that govern the interpretation of data produced by these instruments are understood. In this paper, we describe various methodologies used to assess APSD for nasal inhalation products and discuss proper use, limitations, and new methodologies on the horizon.


Assuntos
Inaladores Dosimetrados , Tamanho da Partícula , Aerossóis , Administração por Inalação , Suspensões
16.
Sci Rep ; 13(1): 18066, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872255

RESUMO

Exposure to bioaerosols has been associated with the occurrence of a variety of health impacts, including infectious illnesses, acute toxic effects, allergies, and cancer. This study aimed at evaluating airborne bacteria and fungi populations at different indoor and outdoor sites on a college campus in Bengaluru, India. Bioaerosol samples were collected using a two-stage Andersen air sampler; and isolates were identified using standard procedures. Six air samples and meteorological data were collected in March and April 2014 to examine the effects of temperature and relative humidity on bioaerosol concentration using linear regression modeling. Among all sites, the canteen showed the highest bioaerosol levels both indoors and outdoors. Specific bacterial identification was not possible, but gram staining and microscopic analysis helped to identify gram positive and gram negative bacteria. The most prevalent fungal species in the samples were Cladosporium, Aspergillus niger, Penicillium, Rhizopus, Fusarium, Mucor, and Alternaria. Due to the impact of weather conditions, such as temperature and relative humidity, the bioaerosol concentration varied greatly at each site according to the regression model. The indoor bioaerosol concentrations at all sites exceeded the values established by the American Industrial Hygiene Association (< 250 CFU/m3 for total fungi and < 500 CFU/m3 for total bacteria). Higher concentrations of bioaerosols may be attributed to the transportation of microbes from the ground surface to suspended particles, the release of microbes from the respiratory tract, higher rate of shredding of human skin cells, and many other factors.


Assuntos
Poluição do Ar em Ambientes Fechados , Fungos , Humanos , Bactérias Gram-Negativas , Antibacterianos/análise , Poluição do Ar em Ambientes Fechados/análise , Bactérias Gram-Positivas , Bactérias , Alternaria , Microbiologia do Ar , Monitoramento Ambiental/métodos , Aerossóis/análise
17.
Environ Monit Assess ; 195(11): 1297, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828346

RESUMO

For the last few decades, air pollution in developing country like India is increasing, and it is a matter of huge concern due to its associated human health impacts. In this region, the burgeoning population, escalating urbanization and industrialization, has been cited as the major reason for such a high air pollution. The present study was carried out for health risk assessment of aerosol particles (PM10 and PM2.5) and its associated heavy metals of an agriculture farm site at Indian Agricultural Research Institute (IARI) considered to be green urban area in Delhi, India. The concentrations of both PM10 and PM2.5 varied significantly from 136 to 177 µg/m3 and 56 to 162 µg/m3, respectively at the site. In the present case, the highest PM10 and PM2.5 levels were reported in January, followed by December. The levels of ambient PM10 and PM2.5 are influenced by wind prevailing meteorology. These levels of PM10 and PM2.5 are more than the permissible limits of WHO guidelines of 15 and 5 µg/m3, respectively, thereby leading to high aerosol loadings specifically in winters. The PM concentration of the atmosphere was found to be negatively correlated with temperature during the sampling period. The concentrations of surface ozone O3 and NOx in the present study were observed to be high in February and March, respectively. The increasing air pollution in the city of Delhi poses a great risk to the human health, as the particulate matter loaded with heavy metals can enter humans via different pathways, viz., ingestion, inhalation, and absorption through skin. The mean hazard index for metals (Zn, Pb, Cd, As, Cr, and Ni) was observed within the acceptable limit (HI < 1), thereby indicating negligible non-carcinogenic effects to residing population. The carcinogenic risk assessment was conducted for Cd, Pb, and As only, as the concentrations for other metals were found to be quite low. The carcinogenic risk values were also within the limits of USEPA standards, indicating no carcinogenic risks to the health of children and adults residing near the site. This information about the PM pollution at the agricultural site and health risk assessment will serve as a baseline data in assessment of human health impacts due to air pollution at the local scale and can be used for development of mitigation strategies for tackling air pollution.


Assuntos
Poluentes Atmosféricos , Metais Pesados , Criança , Adulto , Humanos , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Cádmio , Chumbo , Material Particulado/análise , Metais Pesados/análise , Medição de Risco , Aerossóis , Índia
18.
Wiad Lek ; 76(9): 2034-2040, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37898941

RESUMO

OBJECTIVE: The aim: To establish the level of antibacterial protection of the studied personal protective respiratory equipment set and its main components and compare antibacterial resistance of the personal protective respiratory equipment set in the presence and absence of filtering components. PATIENTS AND METHODS: Materials and methods: The proposed methodology for assessing biological protection parameters is based on testing the permeability of personal respiratory protection equipment for bacteria by the method of serial dilutions. Also additional culturing of separate components of the protective set on a separate media is carried out. The experiment was also repeated in the absence of filtering elements and when they were replaced by gauze masks. RESULTS: Results: The use of a fully equipped pneumatic helmet counteracted the penetration of the bacterial aerosol, which was manifested in the absence of growth on the media. The results obtained with the full configuration, as well as the indicators of the spread of bacteria when removing the filter elements and replacing them with gauze masks, showed that the device creates sufficient positive air pressure inside. The latter becomes a restraining factor that does not allow microorganisms to penetrate through the lower circuit. CONCLUSION: Conclusions: Increasing the duration of continuous operation of the conceptual model up to 24 hours, increasing the bacterial load on the filters do not lead to a deterioration in the properties of antibacterial protection. Bacterial aerosol did not penetrate into the inner space of pneumatic helmet.


Assuntos
Dispositivos de Proteção Respiratória , Humanos , Máscaras , Bactérias , Aerossóis , Antibacterianos
19.
Arch Environ Contam Toxicol ; 85(3): 314-323, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37733035

RESUMO

210Po (polonium), one of the most toxic naturally occurring radionuclides, is well-known as a common natural radionuclide in fish species. Human consumption of 210Po-contaminated fish could result in a significant internal dose. This study determined by alpha spectrometry the 210Po activity in sixteen selected fish species with different living behaviors (pelagic, demersal), trophic positions (herbivores, carnivores, omnivorous), and masses in Dong Thai Lake, Hanoi, Vietnam. The min, max, and average of the 210Po concentration of sixteen fish species were 0.80 ± 0.44, 12.7 ± 0.20, and 3.54 ± 0.31 Bq kg-1, respectively. Regarding the different living behaviors, trophic positions, and masses, the results showed trending of 210Popelagic > 210Podemersal; 210Poherbivores < 210Pocarnivores < 210Poomnivorous and 210Po<0.2 kg > 210Po0.2-1 kg > 210Po>1 kg, respectively. The 210Po concentrations in muscle tissue were greater in fish species with a small mass, omnivorous trophic position, and pelagic living behavior relative to demersal fish with a larger mass that were herbivores or carnivores. In addition, the results showed an uneven distribution of 210Po activities in atmospheric aerosols, terrestrial soils, surface waters, and lake sediments in the study area. The primary source of 210Po could be supplied from atmospheric aerosols and/or terrestrial soils in the study area. The 210Po annual effective dose for adults due to fish consumption has been calculated with a range from 20 to 400 µSv y-1 and 111 µSv. y-1 on average, and it is far below the allowable limits of 1000 µSv y-1.


Assuntos
Peixes , Lagos , Polônio , Monitoramento de Radiação , Animais , Aerossóis/análise , Lagos/química , Solo/química , Vietnã , Polônio/análise , Poluição Ambiental/análise
20.
Environ Int ; 179: 108179, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37666041

RESUMO

Carbonaceous aerosols, comprising organic carbon (OC) and elemental carbon (EC), are critical component of fine particulate matter (PM2.5), with diverse impacts on air quality and human health. This study investigated the concentrations and seasonal patterns of carbonaceous species in PM2.5 during both the heating season (January 2021) and non-heating season (July 2021) in three coal-fueled cities in northern China, as well as the differences in carbonaceous aerosols and their associations with socioeconomic parameters in cities situated on either side of the "Hu Line" in China. The results showed that, owing to intensified coal combustion and unfavorable meteorological conditions, levels of OC, EC, and OC/EC ratios were higher in winter compared to summer. Moreover, the presence of dust (DU) and light pollution (LP) days resulted in elevated OC levels but decreased EC levels. The Char-EC/Soot-EC ratios were highest during LP, followed by CL and DU. A source apportionment analysis demonstrated that coal burning, vehicle exhaust, road dust, and biomass burning were the primary contributors to carbonaceous aerosols, as confirmed by diagnostic ratios, Char-EC/Soot-EC ratios, and PCA analysis. Furthermore, our study found that carbonaceous aerosols concentrations and source apportionment primarily varied with diurnal and seasonal trends and different pollution types. Additionally, at the national scale, population density and urban green space exhibited a positive correlation with OC/EC ratios (p < 0.05), while energy consumption per unit of GDP showed a negative correlation (p < 0.05). The observation that OC/EC ratios were lower in coal-fueled cities than in economy-based cities suggests a more severe pollution scenario. These findings highlight the importance of comprehending of the seasonal variation and chemical characteristics of carbonaceous aerosol for understanding air pollution sources and characteristics, which is essential for both air quality management and human health.


Assuntos
Poeira , Fuligem , Humanos , Estações do Ano , Cidades , Aerossóis , Carbono , Carvão Mineral , Material Particulado , Fatores Socioeconômicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA