Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Methods ; 16(14): 2111-2119, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38516815

RESUMO

Microfluidic-based assessment platforms have recently attracted considerable attention and have been widely used for evaluating in vitro toxic effects. In the present study, we developed an original real-time aerosol exposure system, which focused on a self-designed microfluidic chip, in order to evaluate the toxicological effects following exposure to inhalable aerosols. The three-layer structured microfluidic chip enables real-time aerosol exposure at the gas-liquid interface. The comprehensive detection of toxic effect biomarkers based on this assessment platform encompasses transcriptomics, in situ fluorescence detection, and the identification of extracellular secretagogues. Correspondingly, the effects of selected inhalable aerosols such as cigarette smoke (CS), heated tobacco product smoke (HS), and electronic cigarette smoke (ES) on gene expression profiles, cell viability, intracellular biomarkers (reactive oxygen species and nitric oxide), apoptosis (caspase-3/7 activity), and extracellular biomarkers (IL-8, IL-1ß, TNF-α, and malondialdehyde) in the BEAS-2B cells present on the chip were investigated. Following exposure to aerosols derived from CS, HS, and ES, the transcriptome analysis revealed differential expression in these cells. In addition, the overlapping DEGs from the different treatment groups were found to be primarily associated with stimuli and inflammatory responses. Correspondingly, each of the three categories of selected inhalable aerosols was confirmed to induce significant changes in biomarkers that were associated with toxic effects. These results suggest that the original real-time aerosol exposure system centered around a self-designed chip can be applied to the toxic effect evaluation of inhalable aerosol exposure.


Assuntos
Aerossóis , Biomarcadores , Microfluídica , Poluição por Fumaça de Tabaco , Aerossóis/toxicidade , Sistemas Eletrônicos de Liberação de Nicotina , Poluição por Fumaça de Tabaco/efeitos adversos , Humanos , Linhagem Celular
2.
Toxicology ; 500: 153683, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38013136

RESUMO

Scientific progress and ethical considerations are increasingly shifting the toxicological focus from in vivo animal models to in vitro studies utilizing physiologically relevant cell cultures. Consequently, we evaluated and validated a three-dimensional (3D) model of the human lung using Calu-3 cells cultured at an air-liquid interface (ALI) for 28 days. Assessment of seven essential genes of differentiation and transepithelial electrical resistance (TEER) measurements, in conjunction with mucin (MUC5AC) staining, validated the model. We observed a time-dependent increase in TEER, genetic markers of mucus-producing cells (muc5ac, muc5b), basal cells (trp63), ciliated cells (foxj1), and tight junctions (tjp1). A decrease in basal cell marker krt5 levels was observed. Subsequently, we utilized this validated ALI-cultured Calu-3 model to investigate the adversity of the aerosols generated from three flavored electronic cigarette (EC) e-liquids: cinnamon, vanilla tobacco, and hazelnut. These aerosols were compared against traditional cigarette smoke (3R4F) to assess their relative toxicity. The aerosols generated from PG/VG vehicle control, hazelnut and cinnamon e-liquids, but not vanilla tobacco, significantly decreased TEER and increased lactate dehydrogenase (LDH) release compared to the incubator and air-only controls. Compared to 3R4F, there were no significant differences in TEER or LDH with the tested flavored EC aerosols other than vanilla tobacco. This starkly contrasted our expectations, given the common perception of e-liquids as a safer alternative to cigarettes. Our study suggests that these results depend on flavor type. Therefore, we strongly advocate for further research, increased user awareness regarding flavors in ECs, and rigorous regulatory scrutiny to protect public health.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Animais , Humanos , Aerossóis/toxicidade , Aromatizantes/toxicidade , Pulmão , Nicotina
3.
Chemosphere ; 336: 139283, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37348616

RESUMO

The present study reports the development of a bioassay using Artemia spp. to analyse the preliminary ecotoxicity of atmospheric aerosols (PM), which can affect the environment and human health. Herein, PM samples were collected in the city of Goiânia (Brazil) in 2016, extracted with ultrapure water and subsequently filtered through membranes with different pore sizes (100, 0.8, and 0.22 µm), and the extracts employed in the bioassays. The mortality rates (endpoint analysed) declined to membranes with smaller pore sizes (15 ± 4%, 47 ± 10% and 43 ± 9% for pore sizes of 100 µm, 0.8 µm and 0.22 µm, respectively). In general, the toxicity of the extract depended on its concentration, except for the sample with a higher negative particle surface charge, which presents a lower affinity for the negatively charged surfaces of cellular membranes. Moreover, although the PM concentration was higher for the sample collected during the dry season (September), the mortality rate was not significantly different to that determined for a sample with similar physical and chemical characteristics collected in the rainy season (December). This result demonstrates the importance of monitoring PM toxicities and their chemical and physical characteristics, in addition to their concentrations. Therefore, the new protocol to provide a preliminary analysis of the toxicity of the extracts of aerosol emerges as a useful, accessible, and fast tool for monitoring possible environmental hazards, and can simplify fieldwork.


Assuntos
Poluentes Atmosféricos , Artemia , Humanos , Animais , Brasil , Aerossóis/toxicidade , Aerossóis/análise , Bioensaio , Estações do Ano , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise
4.
Respir Res ; 23(1): 358, 2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36528600

RESUMO

Electronic cigarettes (or e-cigarettes) can be used as smoking cessation aid. Some studies tend to show that they are less hazardous than tobacco cigarettes, even if it does not mean they are completely safe. The huge variation in study designs assessing in vitro toxicity of e-cigarettes aerosol makes it difficult to make comparisons and draw robust and irrefutable conclusions. In this paper, we review this heterogeneity (in terms of e-cigarette products, biological models, and exposure conditions) with a special focus on the wide disparity in the doses used as well as in the way they are expressed. Finally, we discuss the major issue of dosimetry and show how dosimetry tools enable to align data between different exposure systems or data from different laboratories and therefore allow comparisons to help further exploring the risk potential of e-cigarettes.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Abandono do Hábito de Fumar , Aerossóis/toxicidade
5.
Regul Toxicol Pharmacol ; 133: 105216, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35817205

RESUMO

The US Environmental Protection Agency (USEPA) and other regulatory authorities have been working to utilize in vitro studies with human cells and in silico modelling to reduce the use of vertebrate animals for evaluating chemical risk. Using the Source-to-Outcome framework, a novel mathematical procedure was developed to estimate the human equivalent concentration (HEC) for inhalation risk assessment based upon the relevant aerosol characterization, respiratory dosimetry modelling, and endpoints derived from an in vitro assay using human respiratory epithelial tissue. The procedure used the retained doses at the various areas of the inhalation tract estimated from a computational fluid-particle dynamics (CFPD) model coupled with a simple clearance model. The effect of exposure was derived from an in vitro assay. The magnitude of exposure and the particle size distributions (PSDs) of the external aerosol droplets were obtained from Unit Exposure values published by the USEPA and published monitoring studies, respectively. The Source-to-Outcome approach incorporates external and internal exposure metrics with the toxicity pathway. The information was then integrated to conduct a risk assessment for agricultural operators exposed to products containing chlorothalonil (CTN), a broad-spectrum fungicide. The HECs for three different PSDs considered in this work ranged from 0.043 to 0.112 mg-CTN/L for nasal and oral breathing. These were compared with the estimated average daily exposure concentration for six representative application scenarios. The resulting margins of exposure (MOEs) ranged from 230 to 70,000 depending on the application scenario. This New Assessment Method (NAM) that combined human in silico and human in vitro methods, eliminated the typical uncertainties associated with extrapolation from rodent studies, with their associated interspecies toxicokinetics and toxicodynamics differences. The intraspecies toxicodynamics and toxicokinetics, are still relevant and may need to be used in an inhalation risk assessment. The NAM presented in this work is not chemical-specific and may be applied to conduct an inhalation risk assessment for workers as well as bystanders who could be exposed to aerosol particles of any cytotoxic respiratory irritant.


Assuntos
Exposição por Inalação , Sistema Respiratório , Administração por Inalação , Aerossóis/toxicidade , Animais , Simulação por Computador , Humanos , Exposição por Inalação/efeitos adversos , Exposição por Inalação/análise , Medição de Risco
6.
J Appl Toxicol ; 42(10): 1701-1722, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35543240

RESUMO

Most flavors used in e-liquids are generally recognized as safe for oral consumption, but their potential effects when inhaled are not well characterized. In vivo inhalation studies of flavor ingredients in e-liquids are scarce. A structure-based grouping approach was used to select 38 flavor group representatives (FGR) on the basis of known and in silico-predicted toxicological data. These FGRs were combined to create prototype e-liquid formulations and tested against cigarette smoke (CS) in a 5-week inhalation study. Female A/J mice were whole-body exposed for 6 h/day, 5 days/week, for 5 weeks to air, mainstream CS, or aerosols from (1) test formulations containing propylene glycol (PG), vegetable glycerol (VG), nicotine (N; 2% w/w), and flavor (F) mixtures at low (4.6% w/w), medium (9.3% w/w), or high (18.6% w/w) concentration or (2) base formulation (PG/VG/N). Male A/J mice were exposed to air, PG/VG/N, or PG/VG/N/F-high under the same exposure regimen. There were no significant mortality or in-life clinical findings in the treatment groups, with only transient weight loss during the early exposure adaptation period. While exposure to flavor aerosols did not cause notable lung inflammation, it caused only minimal adaptive changes in the larynx and nasal epithelia. In contrast, exposure to CS resulted in lung inflammation and moderate-to-severe changes in the epithelia of the nose, larynx, and trachea. In summary, the study evaluates an approach for assessing the inhalation toxicity potential of flavor mixtures, thereby informing the selection of flavor exposure concentrations (up to 18.6%) for a future chronic inhalation study.


Assuntos
Fumar Cigarros , Administração por Inalação , Aerossóis/toxicidade , Animais , Feminino , Glicerol/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos , Propilenoglicol/toxicidade , Nicotiana
7.
Food Chem Toxicol ; 164: 112999, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35427705

RESUMO

Consumer spray products release aerosols that can potentially be inhaled and reach the deep parts of the lungs. A thin layer of liquid, containing a mixture of proteins and lipids known as lung surfactant, coats the alveoli. Inhibition of lung surfactant function can lead to acute loss of lung function. We focused on two groups of spray products; 8 cleaning and 13 impregnation products, and in the context of risk assessment, used an in vitro method for assessing inhibition of lung surfactant function. Original spray-cans were used to generate aerosols to measure aerodynamic particle size distribution. We recreated a real-life exposure scenario to estimate the alveolar deposited dose. Most impregnation products inhibited lung surfactant function at the lowest aerosolization rate, whereas only two cleaning products inhibited function at the highest rates. We used inhibitory dose and estimated alveolar deposition to calculate the margin of safety (MoS). The MoS for the inhibitory products was ≤1 for the impregnation products, while much larger for the cleaning products (>880). This risk assessment focused on the risk of lung surfactant function disruption and provides knowledge on an endpoint of lung toxicity that is not investigated by the currently available OECD test guidelines.


Assuntos
Exposição por Inalação , Surfactantes Pulmonares , Aerossóis/toxicidade , Excipientes , Exposição por Inalação/efeitos adversos , Exposição por Inalação/análise , Pulmão/metabolismo , Tamanho da Partícula , Surfactantes Pulmonares/metabolismo , Surfactantes Pulmonares/toxicidade , Medição de Risco , Tensoativos/toxicidade
8.
Cell Mol Biol (Noisy-le-grand) ; 66(6): 112-116, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33040795

RESUMO

nvestigations on adverse biological effects of nanoparticles (NP) are performed usually either in vivo on rodents or in vitro under submerged conditions where NP are in suspension into cell culture media. However, sedimentation of NP in vitro is a continuous process and to assess the exact deposited cellular dose remains difficult, as the cellular internal dose is a function of time. Moreover, the cellular responses to NP under submerged culture conditions or by exposing rodents by nose-only to NP aerosols might differ from those observed at physiological settings at the air-liquid interface (ALI). Rat alveolar NR8383 macrophages were exposed to aerosols at the air-liquid interface. We studied TiO2 NM105, a mixture of anatase and rutile. NR8383 cells were exposed to a single dose of 3.0 cm2/cm2 of TiO2 aerosol. Following RNA extraction, transcriptome allowing full coverage of the rat genome was performed, and differentially expressed genes were retrieved. Their products were analyzed for functions and interaction with String DB. Only 126 genes were differentially expressed and 98 were recognized by String DB and give us the gene expression signature of exposed rat alveolar NR8383 macrophages. Among them, 13 display relationships at a high confidence level and the ten most differentially expressed compared to unexposed cells were: Chac1, Ccl4, Zfp668, Fam129b, Nab2, Txnip, Id1, Cdc42ep3, Dusp6 and Myc, ranked from the most overexpressed to the most under-expressed. Some of them were previously described as over or under-expressed in NP exposed cell systems. We validated in our laboratory an easy-to-use device and a physiological relevant paradigm for studying the effects of cell exposure to TiO2. Ccl4 gene expression seems to be a positive marker of exposure evidenced as well as in vivo or in both in vitro conditions.


Assuntos
Nanopartículas/toxicidade , Titânio/toxicidade , Aerossóis/toxicidade , Animais , Linhagem Celular , Expressão Gênica/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Ratos , Suspensões/toxicidade , Transcriptoma/efeitos dos fármacos
9.
Artigo em Inglês | MEDLINE | ID: mdl-32962023

RESUMO

Exposure science is underpinned by characterization (measurement) of exposures. In this article, six recent advances in exposure characterization by sampling and analysis are reviewed as tools in the occupational exposure assessment of aerosols. Three advances discussed in detail are (1) recognition and inclusion of sampler wall deposits; (2) development of a new sampling and analytical procedure for respirable crystalline silica that allows non-destructive field analysis at the end of the sampling period; and (3) development of a new sampler to collect the portion of sub-300 nm aerodynamic diameter particles that would deposit in human airways. Three additional developments are described briefly: (4) a size-selective aerosol sampler that allows the collection of multiple physiologically-relevant size fractions; (5) a miniaturized pump and versatile sampling head to meet multiple size-selective sampling criteria; and (6) a novel method of sampling bioaerosols including viruses while maintaining viability. These recent developments are placed in the context of the historical evolution in sampling and analytical developments from 1900 to the present day. While these are not the only advances in exposure characterization, or exposure assessment techniques, they provide an illustration of how technological advances are adding more tools to our toolkit. The review concludes with a number of recommended areas for future research, including expansion of real-time and end-of-shift on-site measurement, development of samplers that operate at higher flow-rates to ensure measurement at lowered limit values, and development of procedures that accurately distinguish aerosol and vapor phases of semi-volatile substances.


Assuntos
Aerossóis , Poluentes Ocupacionais do Ar , Exposição Ocupacional , Aerossóis/análise , Aerossóis/toxicidade , Poluentes Ocupacionais do Ar/análise , Poeira/análise , Monitoramento Ambiental , Humanos , Exposição Ocupacional/análise , Tamanho da Partícula
10.
Toxicol In Vitro ; 66: 104866, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32353510

RESUMO

The use of electronic vaping products (EVPs) continues to increase worldwide among adult smokers in parallel with accumulating information on their potential toxicity and relative safety compared to tobacco smoke. At this time, in vitro assessments of many widely available EVPs are limited. In this study, an in vitro battery of established assays was used to examine the cytotoxic (Neutral red uptake), genotoxic (In vitro micronucleus) and mutagenic (Bacterial reverse mutation) responses of two commercial EVPs (blu GO™ disposable and blu PLUS+™ rechargeable) when compared to smoke from a reference cigarette (3R4F). In total, 12 commercial products were tested as e-liquids and as aerosols. In addition, two experimental base liquids containing 1.2% and 2.4% nicotine were also assessed to determine the effect of flavour and nicotine on all three assays. In the bacterial reverse mutation (Ames) and in vitro micronucleus (IVM) assays, exposures to e-liquids and EVP aerosols, with and without nicotine and in a range of flavourings, showed no mutagenic or genotoxic effects compared to tobacco smoke. The neutral red uptake (NRU) assay showed significantly reduced cytotoxicity (P < .05) for whole undiluted EVP aerosols compared to tobacco smoke, which by contrast was markedly cytotoxic even when diluted. The reduced in vitro toxicological responses of the EVPs add to the increasing body of scientific weight-of-evidence supporting the role of high-quality EVPs as a harm reduction tool for adult smokers.


Assuntos
Aerossóis/toxicidade , Sistemas Eletrônicos de Liberação de Nicotina , Aromatizantes/toxicidade , Nicotiana , Nicotina/toxicidade , Fumaça/efeitos adversos , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2 , Humanos , Testes de Mutagenicidade , Vaping
11.
J Hazard Mater ; 395: 122687, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32330784

RESUMO

In assessing the biological impact of airborne particles in vitro, air-liquid interface (ALI) exposure chambers are increasingly preferred over classical submerged exposure techniques, albeit historically limited by their inability to deliver sufficient aerosolized dose. A novel ALI system, the Dosimetric Aerosol in Vitro Inhalation Device (DAVID), bioinspired by the human respiratory system, uses water-based condensation for highly efficient aerosol deposition to ALI cell culture. Here, welding fumes (well-studied and inherently toxic ultrafine particles) were used to assess the ability of DAVID to generate toxicological responses between differing welding conditions. After fume exposure, ALI-cultured cells showed reductions in viability that were both distinct between welding conditions and linearly dose-dependent with respect to exposure time; comparatively, submerged cell cultures ran in parallel did not show these trends across exposure levels. DAVID delivers a substantial dose in minutes (> 100 µg/cm2), making it preferable over previous ALI systems, which require hours of exposure to deliver sufficient dose, and over submerged techniques, which lack comparable physiological relevance. DAVID has the potential to provide the most accurate assessment of in vitro toxicity yet from the perspectives of physiological relevance to the human respiratory system and efficiency in collecting ultrafine aerosol common to hazardous exposure conditions.


Assuntos
Poluentes Ocupacionais do Ar , Soldagem , Aerossóis/toxicidade , Poluentes Ocupacionais do Ar/análise , Poluentes Ocupacionais do Ar/toxicidade , Gases , Humanos , Exposição por Inalação , Sistema Respiratório
12.
Artigo em Inglês | MEDLINE | ID: mdl-32187987

RESUMO

Since poor air quality affects human health in the short and long term, much research has been performed on indoor and outdoor aerosol exposure; however, there is a lack of specific data on the exposure and health risks of inhalable aerosols that contain bioaerosol in different environments of human life. To investigate the potential exposure to inhalable aerosols (in the monitoring of particulate matter (PM) based on R modeling, variations of PM depend on the ventilation system and bioaerosols based on size distribution) in various environments, the special viability and culturability of bioaerosols and their deposition doses in the respiratory system were evaluated. We conducted exposure assessments on inhalable aerosols in various indoor environments (childcare facilities, schools, commercial buildings, elderly and homes). The fractions of PM (PM10, PM4 and PM2.5) were investigated and, for the bioaerosol, the viability, culturability, inhalation daily dose and the deposited dose of the aerosol in the respiratory system were calculated to evaluate the human health effects. For two years, the distribution of the indoor PM concentration was high in all PM fractions in schools and commercial buildings, and low in the elderly and at homes. For airborne bacteria, the highest concentrations were shown in the childcare facility during the four seasons, while airborne fungi showed high concentrations in the buildings during the spring and summer, which showed significant differences from other investigated environments (between the buildings and elderly and homes: p < 0.05). The viability and culturability for the bioaerosol showed no significant difference in all environments, and the correlation between inhalable PM and bioaerosol obtained from the six-stage impactor showed that the coefficient of determination (R2) between coarse particles (PM10-2.5, the size of stage 2-3) and cultivable airborne bacteria ranged from 0.70 (elderly and homes) to 0.84 (school) during the summer season.


Assuntos
Aerossóis , Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Aerossóis/toxicidade , Idoso , Poluentes Atmosféricos/toxicidade , Criança , Comércio , Monitoramento Ambiental , Humanos , Exposição por Inalação , Casas de Saúde , Tamanho da Partícula , Material Particulado , Instituições Acadêmicas , Estações do Ano
13.
Arch Toxicol ; 93(11): 3229-3247, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31494692

RESUMO

We previously proposed a systems toxicology framework for in vitro assessment of e-liquids. The framework starts with the first layer aimed at screening the potential toxicity of e-liquids, followed by the second layer aimed at investigating the toxicity-related mechanism of e-liquids, and finally, the third layer aimed at evaluating the toxicity-related mechanism of the corresponding aerosols. In this work, we applied this framework to assess the impact of the e-liquid MESH Classic Tobacco and its aerosol compared with that of cigarette smoke (CS) from the 3R4F reference cigarette. In the first layer, we evaluated the cytotoxicity profile of the MESH Classic Tobacco e-liquid (containing humectants, nicotine, and flavors) and its Base e-liquid (containing humectant and nicotine only) in comparison with total particulate matter (TPM) of 3R4F CS using primary bronchial epithelial cell cultures. In the second layer, the same culture model was used to explore changes in specific markers using high-content screening assays to identify potential toxicity-related mechanisms induced by the MESH Classic Tobacco and Base e-liquids beyond cell viability in comparison with the 3R4F CS TPM-induced effects. Finally, in the third layer, we compared the impact of exposure to the MESH Classic Tobacco or Base aerosols with 3R4F CS using human organotypic air-liquid interface buccal and small airway epithelial cultures. The results showed that the cytotoxicity of the MESH Classic Tobacco liquid was similar to the Base liquid but lower than 3R4F CS TPM at comparable nicotine concentrations. Relative to 3R4F CS exposure, MESH Classic Tobacco aerosol exposure did not cause tissue damage and elicited lower changes in the mRNA, microRNA, and protein markers. In the context of tobacco harm reduction strategy, the framework is suitable to assess the potential-reduced impact of electronic cigarette aerosol relative to CS.


Assuntos
Aerossóis/toxicidade , Brônquios/efeitos dos fármacos , Sistemas Eletrônicos de Liberação de Nicotina , Células Epiteliais/efeitos dos fármacos , Produtos do Tabaco/toxicidade , Adenilato Quinase/metabolismo , Brônquios/metabolismo , Brônquios/patologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Cultura Primária de Células , Proteoma/metabolismo , Testes de Toxicidade , Transcriptoma/efeitos dos fármacos
14.
Crit Rev Toxicol ; 49(9): 725-741, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31903848

RESUMO

One of the challenges for toxicological assessment of inhaled aerosols is to accurately predict their deposited and absorbed dose. Transport, evolution, and deposition of liquid aerosols are driven by complex processes dominated by convection-diffusion that depend on various factors related to physics and chemistry. These factors include the physicochemical properties of the pure substance of interest and associated mixtures, the physical and chemical properties of the aerosols generated, the interplay between different factors during transportation and deposition, and the subject-specific inhalation topography. Several inhalation-based physiologically based pharmacokinetic (PBPK) models have been developed, but the applicability of these models for aerosols has yet to be verified. Nicotine is among several substances that are often delivered via the pulmonary route, with varied kinetics depending upon the route of exposure. This was used as an opportunity to review and discuss the current knowledge and state-of-the-art tools combining aerosol dosimetry predictions with PBPK modeling efforts. A validated tool could then be used to perform for toxicological assessment of other inhaled therapeutic substances. The Science Panel from the Alliance of Risk Assessment have convened at the "Beyond Science and Decisions: From Problem Formulation to Dose-Response Assessment" workshop to evaluate modeling approaches and address derivation of exposure-internal dose estimations for inhaled aerosols containing nicotine or other substances. The discussion involved PBPK model evaluation criteria, challenges, and choices that arise in such a model design, development, and application as a computational tool for use in human toxicological assessments.


Assuntos
Aerossóis/análise , Nicotina/análise , Dispositivos para o Abandono do Uso de Tabaco , Administração por Inalação , Aerossóis/metabolismo , Aerossóis/toxicidade , Simulação por Computador , Humanos , Cinética , Pulmão , Modelos Biológicos , Nicotina/metabolismo , Nicotina/toxicidade , Farmacocinética , Medição de Risco , Distribuição Tecidual
15.
J Hazard Mater ; 365: 771-777, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30476800

RESUMO

This research investigates the mileage and the health risk assessment of aerosol carcinogenicity and mutagenicity emitted by ten in-use motorcycles. The total p-PAHs emission factor of ten in-use motorcycles are 676.3 µg km-1 with average of 67.6 ± 13.6 µg km-1. Naphthalene (Nap) shows the largest emission factors, followed by phenanthrene (PA) and fluoranthen (FL). The mileage present high correlation coefficient (Rsp = 0.681) with CO. CO is associated with cumulative mileage leading to bad combustion efficiency, which caused low to high relationship for total p-PAHs (Rsp = 0.388), PM2.5 (Rsp = 0.680) and NOx (Rsp = 0.799). Both PM2.5 and total p-PAHs are generally generated via incomplete combustion and the results expressed the moderate to high correlation (Rsp = 0.578, 0.898) with NOx. Taking into consideration of high-mileage motorcycles (30,001-50,000 km), the toxic equivalent of carcinogenicity and mutagenicity exhaust are about 4.67, 1.99 and 3.89, 2.0 times higher than low (10,001-20,000 km) and middle (20,001-30,000 km) cumulative mileages, respectively. Therefore, in the conclusion of our study in compared with that of other research directed the fact that lower carcinogenicity and mutagenicity emission factor were found at lower cumulative mileages motorcycles however, the impact increases with the high cumulative mileage motorcycles.


Assuntos
Aerossóis/toxicidade , Motocicletas , Material Particulado/toxicidade , Testes de Carcinogenicidade , Testes de Mutagenicidade
16.
J Toxicol Environ Health A ; 81(16): 774-791, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29985787

RESUMO

Fischer-Tropsch (FT) Synthetic Paraffinic Kerosene (SPK) jet fuel is a synthetic organic mixture intended to augment petroleum-derived JP-8 jet fuel use by the U.S. armed forces. The FT SPK testing program goal was to develop a comparative toxicity database with petroleum-derived jet fuels that may be used to calculate an occupational exposure limit (OEL). Toxicity investigations included the dermal irritation test (FT vs. JP-8 vs. 50:50 blend), 2 in vitro genotoxicity tests, acute inhalation study, short-term (2-week) inhalation range finder study with measurement of bone marrow micronuclei, 90-day inhalation toxicity, and sensory irritation assay. Dermal irritation was slight to moderate. All genotoxicity studies were negative. An acute inhalation study with F344 rats exposed at 2000 mg/m3 for 4 hr resulted in no abnormal clinical observations. Based on a 2-week range-finder, F344 rats were exposed for 6 hr per day, 5 days per week, for 90 days to an aerosol-vapor mixture of FT SPK jet fuel (0, 200, 700 or 2000 mg/m3). Effects on the nasal cavities were minimal (700 mg/m3) to mild (2000 mg/m3); only high exposure produced multifocal inflammatory cell infiltration in rat lungs (both genders). The RD50 (50% respiratory rate depression) value for the sensory irritation assay, calculated to be 10,939 mg/m3, indicated the FT SPK fuel is less irritating than JP-8. Based upon the proposed use as a 50:50 blend with JP-8, a FT SPK jet fuel OEL is recommended at 200 mg/m3 vapor and 5 mg/m3 aerosol, in concurrence with the current JP-8 OEL.


Assuntos
Aerossóis/toxicidade , Querosene/toxicidade , Exposição Ocupacional/análise , Parafina/toxicidade , Administração por Inalação , Animais , Medula Óssea/efeitos dos fármacos , Feminino , Hidrocarbonetos/toxicidade , Masculino , Camundongos , Testes para Micronúcleos , Testes de Mutagenicidade , Coelhos , Ratos , Ratos Endogâmicos F344 , Testes de Toxicidade
17.
Environ Int ; 114: 202-211, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29518663

RESUMO

Anaerobic digestion is a consolidated biotechnology able to produce renewable energy from biomasses. In the European countries, quick growth of biogas production from different organic matrices including wastes has been observed. In relation to the characteristics and quantity of the anaerobic digestion of feedstock, there are different technologies, advantages and criticisms. An accurate occupational risk assessment and development of management tools for green jobs involved in the anaerobic digestion plants are due. The aim of this work is to assess the aerosol exposure for such workers, focusing on the bioaerosol risk. Full scale plants for the treatment of organic municipal waste, waste water treatment sludge, agro zootechnical and food producing byproducts were involved for this purpose. The bioaerosol levels were monitored during activities through culturing and biomolecular methods; moreover, the sub-fractionated PM10 and carried endotoxins were measured in different plant areas. Global microbial contamination is higher (>5000 UFC/m3) in the area where organic wastes are handled and pretreated, both for organic municipal waste plants - with a bacterial prevalence - and agro zootechnical plants - with a fungi prevalence. Moreover, the microbial contamination is higher where organic municipal waste is present in respect to other biomasses (ANOVA p < 0.01). Numerous pathogens are carried by the aerosol. HAdV-4 presence is lower than LOQ (50 gene copies/m3) in all the samples. Environmental PM10 reached the 280 µg/m3 level including PM3 for 78%. Endotoxin pollution overtakes the 90 EU/m3 limit sporadically. Personal PM4.5 reached 10 mg/m3 only for maintenance technicians in the pretreatment area for organic municipal waste. The risk can be evaluated under a quantitative and qualitative point of view highlighting risk management improvement for anaerobic digestion plants.


Assuntos
Aerossóis/toxicidade , Biocombustíveis , Biotecnologia , Exposição Ocupacional/análise , Humanos , Medição de Risco
18.
Food Chem Toxicol ; 115: 284-301, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29545142

RESUMO

Modified risk tobacco products (MRTPs) have the potential to reduce smoking-related health risks. The Carbon Heated Tobacco Product 1.2 (CHTP1.2) is a potential MRTP that uses a pressed carbon heat source to generate an aerosol by heating tobacco. Here, we report the results from the systems toxicology arm of a 90-day rat inhalation study (OECD test guideline 413) to assess the effects of CHTP1.2 aerosol compared with cigarette smoke (CS). Transcriptomics, proteomics, and lipidomics analyses complemented the standard endpoints. In the respiratory nasal epithelium, CS induced an adaptive tissue and inflammatory response, which was much weaker after CHTP1.2 aerosol exposure, mostly limited to the highest CHTP1.2 concentration (at twice the 3R4F CS concentration: 50 vs. 23 µg nicotine/L), in female rats. In the lungs, the effects of CS exposure included inflammatory and cellular stress responses, which were absent or much lower after CHTP1.2 aerosol exposure. Outside of the respiratory tract, CS and CHTP1.2 aerosol induced effects that were previously associated with exposure to any nicotine-containing aerosol, e.g., lower lipid concentrations in serum. Overall, this systems toxicology analysis complements and confirms the results from classical toxicological endpoints and further suggests potentially reduced respiratory health risks of CHTP1.2.


Assuntos
Aerossóis/toxicidade , Carbono , Fumaça/efeitos adversos , Produtos do Tabaco/toxicidade , Animais , Feminino , Perfilação da Expressão Gênica , Temperatura Alta , Exposição por Inalação , Lipídeos/química , Pulmão/efeitos dos fármacos , Masculino , Mucosa Nasal/efeitos dos fármacos , Proteômica , Ratos Sprague-Dawley , Testes de Toxicidade , Transcriptoma
19.
Food Chem Toxicol ; 115: 109-126, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29501877

RESUMO

The biological impact of an aerosol of a potential modified-risk tobacco product, carbon heated tobacco product 1.2 (CHTP1.2), was comprehensively assessed for the first time in vitro using human small airway and nasal epithelial models following a systems toxicology approach. The potentially reduced effects of CHTP1.2 aerosol exposure were benchmarked against those of 3R4F cigarette smoke at similar nicotine concentrations. Experimental repetitions were conducted for which new batches of small airway and nasal cultures were exposed to CHTP1.2 aerosol or 3R4F smoke for 28 minutes. The biological impacts were determined based on a collection of endpoints including morphology, cytotoxicity, proinflammatory mediator profiles, cytochrome P450 1A1/1B1 activity, global mRNA and microRNA changes and proteome profiles. Alterations in mRNA expression were detected in cultures exposed to CHTP1.2 aerosol, without noticeable morphological changes and cytotoxicity, and minimal impact on proinflammatory mediator and proteome profiles. The changes linked to CHTP1.2 aerosol exposure, when observed, were transient. However, the impact of 3R4F smoke exposure persisted long post-exposure and greater than CHTP1.2 aerosol. Morphological changes were observed only in cultures exposed to 3R4F smoke. The lower biological effects of CHTP1.2 aerosol than 3R4F smoke exposure were observed similarly in both small airway and nasal epithelial cultures.


Assuntos
Aerossóis/toxicidade , Carbono/química , Células Epiteliais/efeitos dos fármacos , Nicotiana/toxicidade , Fumaça/efeitos adversos , Produtos do Tabaco/toxicidade , Aerossóis/análise , Carbono/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Células Epiteliais/citologia , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Nicotiana/química , Produtos do Tabaco/análise
20.
Regul Toxicol Pharmacol ; 93: 71-83, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29080850

RESUMO

In vitro studies have been widely used to support the toxicological evaluation of chemicals and complex mixtures including cigarette smoke. In this study, the total particulate matter and whole aerosol from a Kentucky reference 3R4F cigarette and two commercially available tobacco heating products (THPs) were assessed using in vitro mutagenicity, cytotoxicity and tumour-promoting activity assays. The Ames assay assessed mutagenicity using Salmonella typhimurium tester strains TA98, TA100, TA1535, TA1537 and TA102 ± metabolic activation (S9). The mouse lymphoma assay was used with short 3 h and longer 24 h exposures. The Bhas 42 cell transformation assay was incorporated as an in vitro alternative for detecting tumour promoters, and the neutral red uptake cell viability assay provided an acute measure of cytotoxicity. To complement the approach, the Ames assay was also employed with S. typhimurium tester strains TA98, TA100, TA1535, TA97 and TA102 using a scaled down methodology for the assessment of aerosols. All the in vitro techniques employed produced a clear positive response with cigarette smoke and in contrast, a negative response to THPs at doses equivalent to or higher than a cigarette smoke test matrix. The data show little difference between the THPs assessed suggesting parity between products.


Assuntos
Aerossóis/toxicidade , Sistemas Eletrônicos de Liberação de Nicotina/métodos , Calefação/métodos , Mutagênicos/toxicidade , Aerossóis/análise , Animais , Células 3T3 BALB , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Testes de Mutagenicidade/métodos , Mutagênicos/análise , Ratos , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Testes de Toxicidade/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA