Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
ACS Chem Neurosci ; 10(12): 4810-4823, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31661961

RESUMO

The microtubule-associated protein tau is critical for the development and maintenance of the nervous system. Tau dysfunction is associated with a variety of neurodegenerative diseases called tauopathies, which are characterized by neurofibrillary tangles formed by abnormally aggregated tau protein. Studying the aggregation mechanism of tau protein is of great significance for elucidating the etiology of tauopathies. The hexapeptide 306VQIVYK311 (PHF6) of R3 has been shown to play a vital role in promoting tau aggregation. In this study, long-term all-atom molecular dynamics simulations in explicit solvent were performed to investigate the mechanisms of spontaneous aggregation and template-induced misfolding of PHF6, and the dimerization at the early stage of nucleation was further specifically analyzed by the Markov state model (MSM). Our results show that PHF6 can spontaneously aggregate to form multimers enriched with ß-sheet structure and the ß-sheets in multimers prefer to exist in a parallel way. It is observed that PHF6 monomer can be induced to form a ß-sheet structure on either side of the template but in a different way. In detail, the ß-sheet structure is easier to form on the left side but does not extend well, but on the right side, the monomer can form the extended ß-sheet structure. Furthermore, MSM analysis shows that the formation of dimer mainly occurs in three steps. First, the separated monomers collide with each other at random orientations, and then a dimer with short ß-sheet structure at the N-terminal forms; finally, ß-sheets elongate to form an extended parallel ß-sheet dimer. During these processes, multiple intermediate states are identified and multiple paths can form a parallel ß-sheet dimer from the disordered coil structure. Moreover, the residues I308, V309, and Y310 play an essential role in the dimerization. In a word, our results uncover the aggregation and misfolding mechanism of PHF6 from the atomic level, which can provide useful theoretical guidance for rational design of effective therapeutic drugs against tauopathies.


Assuntos
Agregados Proteicos , Agregação Patológica de Proteínas/metabolismo , Proteínas tau/química , Sequência de Aminoácidos , Sítios de Ligação , Dimerização , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Cadeias de Markov , Microtúbulos/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Emaranhados Neurofibrilares/metabolismo , Conformação Proteica , Domínios Proteicos , Dobramento de Proteína , Estrutura Secundária de Proteína
2.
FASEB J ; 31(12): 5609-5624, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28842427

RESUMO

Amyotrophic lateral sclerosis and frontotemporal lobar degeneration with ubiquitin-positive inclusions are neurodegenerative disorders that share the cytosolic deposition of TDP-43 (TAR DNA-binding protein 43) in the CNS. TDP-43 is well known as being actively degraded by both the proteasome and macroautophagy. The well-documented decrease in the efficiency of these clearance systems in aging and neurodegeneration, as well as the genetic evidence that many of the familial forms of TDP-43 proteinopathies involve genes that are associated with them, suggest that a failure of these protein degradation systems is a major factor that contributes to the onset of TDP-43-associated disorders. Here, we inserted preformed human TDP-43 aggregates in the cytosol of murine NSC34 and N2a cells in diffuse form and observed their degradation under conditions in which exogenous TDP-43 is not expressed and endogenous nuclear TDP-43 is not recruited, thereby allowing a time zero to be established in TDP-43 degradation and to observe its disposal kinetically and analytically. TDP-43 degradation was observed in the absence and presence of selective inhibitors and small interfering RNAs against the proteasome and autophagy. We found that cytosolic diffuse aggregates of TDP-43 can be distinguished in 3 different classes on the basis of their vulnerability to degradation, which contributed to the definition-with previous reports-of a total of 6 distinct classes of misfolded TDP-43 species that range from soluble monomer to undegradable macroaggregates. We also found that the proteasome and macroautophagy-degradable pools of TDP-43 are fully distinguishable, rather than in equilibrium between them on the time scale required for degradation, and that a significant crosstalk exists between the 2 degradation processes.-Cascella, R., Fani, G., Capitini, C., Rusmini, P., Poletti, A., Cecchi, C., Chiti, F. Quantitative assessment of the degradation of aggregated TDP-43 mediated by the ubiquitin proteasome system and macroautophagy.


Assuntos
Autofagia/fisiologia , Proteínas de Ligação a DNA/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Animais , Autofagia/genética , Linhagem Celular , Proteínas de Ligação a DNA/genética , Humanos , Corpos de Inclusão/metabolismo , Camundongos , Doença dos Neurônios Motores/genética , Doença dos Neurônios Motores/metabolismo , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/metabolismo , Proteólise , Interferência de RNA , Ubiquitina/genética
3.
Am J Hematol ; 92(6): 536-541, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28295502

RESUMO

Immunoglobulin light chain (AL) amyloidosis is a fatal complication of B-cell proliferation secondary to deposition of amyloid fibrils in various organs. Urinary exosomes (UEX) are the smallest of the microvesicles excreted in the urine. Previously, we found UEX of patients with AL amyloidosis contained immunoglobulin light chain (LC) oligomers that patients with multiple myeloma did not have. To further explore the role of the LC oligomers, UEX was isolated from an AL amyloidosis patient with progressive renal disease despite achieving a complete response. LC oligomers were identified. Mass spectrometry (MS) of the UEX and serum identified two monoclonal lambda LCs. Proteomics of the trypsin digested amyloid fragments in the kidney by laser microdissection and MS analysis identified a λ6 LC. The cDNA from plasma cell clone was from the IGLV- 6-57 family and it matched the amino acid sequences of the amyloid peptides. The predicted mass of the peptide product of the cDNA matched the mass of one of the two LCs identified in the UEX and serum. UEX combined with MS were able to identify 2 monoclonal lambda LCs that current clinical methods could not. It also identified the amyloidogenic LC which holds potential for response assessment in the future.


Assuntos
Amiloidose/complicações , Amiloidose/metabolismo , Exossomos/metabolismo , Cadeias Leves de Imunoglobulina/metabolismo , Proteinúria/diagnóstico , Proteinúria/etiologia , Adulto , Idoso , Sequência de Aminoácidos , Amiloidose/genética , Feminino , Humanos , Cadeias Leves de Imunoglobulina/química , Cadeias Leves de Imunoglobulina/genética , Cadeias Leves de Imunoglobulina/urina , Amiloidose de Cadeia Leve de Imunoglobulina , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Peso Molecular , Agregados Proteicos , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/urina , Análise de Sequência de DNA
4.
PLoS One ; 10(9): e0137357, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26348728

RESUMO

Amyloid beta (Aß) oligomers associated with Alzheimer's disease (AD) form Ca2+-permeable plasma membrane pores, leading to a disruption of the otherwise well-controlled intracellular calcium (Ca2+) homeostasis. The resultant up-regulation of intracellular Ca2+ concentration has detrimental implications for memory formation and cell survival. The gating kinetics and Ca2+ permeability of Aß pores are not well understood. We have used computational modeling in conjunction with the ability of optical patch-clamping for massively parallel imaging of Ca2+ flux through thousands of pores in the cell membrane of Xenopus oocytes to elucidate the kinetic properties of Aß pores. The fluorescence time-series data from individual pores were idealized and used to develop data-driven Markov chain models for the kinetics of the Aß pore at different stages of its evolution. Our study provides the first demonstration of developing Markov chain models for ion channel gating that are driven by optical-patch clamp data with the advantage of experiments being performed under close to physiological conditions. Towards the end, we demonstrate the up-regulation of gating of various Ca2+ release channels due to Aß pores and show that the extent and spatial range of such up-regulation increases as Aß pores with low open probability and Ca2+ permeability transition into those with high open probability and Ca2+ permeability.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Cálcio/metabolismo , Permeabilidade da Membrana Celular , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/genética , Animais , Cálcio/química , Membrana Celular/metabolismo , Membrana Celular/patologia , Sobrevivência Celular , Humanos , Cinética , Cadeias de Markov , Potencial da Membrana Mitocondrial , Oócitos/química , Oócitos/metabolismo , Imagem Óptica , Técnicas de Patch-Clamp , Agregação Patológica de Proteínas/metabolismo , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA