Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Appl Microbiol ; 129(2): 345-355, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32091657

RESUMO

AIMS: Paclitaxel is a type of broad-spectrum anticancer drug in short supply. The price of acetyl-CoA (17 709 677·4 USD mol-1 ), which is the acetyl group donor for the enzymatic synthesis of the intermediate, baccatin Ⅲ, is still the bottleneck of the mass production of paclitaxel. This study reports a novel acetyl group donor, which could substantially reduce the cost of production. METHODS AND RESULTS: In this study, a substrate spectrum with 14 kinds of representative acetyl-donor substitutes predicted by computer-aided methods was tested in a 10-deacetylbaccatin Ⅲ-10-O-acetyltransferase (DBAT) heterogeneous-expressed open-whole-cell catalytic system. The results of computer prediction and experimental analysis revealed the rule of the acetyl-donor compounds based on this substrate spectrum. N-acetyl-d-glucosamine (30·95 USD mol-1 , about 572 202-fold cheaper than acetyl-CoA) is selected as a suitable substitute under the rule. The yield when using N-acetyl-d-glucosamine as acetyl donor in open-whole-cell catalytic system was 2·13-fold of that when using acetyl-CoA. In the in vivo system, the yield increased 24·17%, which may indicate its cooperation with acetyl-CoA. CONCLUSION: The success of open-whole-cell synthesis and in vivo synthesis of baccatin Ⅲ by adding N-acetyl-d-glucosamine as acetyl substrate demonstrates that it is a useful substrate to improve the yield of baccatin Ⅲ. SIGNIFICANCE AND IMPACT OF THE STUDY: All these findings provided a potential acetyl-donor substitute for acetyl-CoA, as well as a low cost and efficient method of preparing paclitaxel through baccatin Ⅲ semi-synthesis.


Assuntos
Acetilglucosamina/metabolismo , Alcaloides/biossíntese , Acetilcoenzima A/metabolismo , Acetiltransferases/genética , Acetiltransferases/metabolismo , Alcaloides/economia , Antineoplásicos Fitogênicos/biossíntese , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/economia , Biocatálise , Paclitaxel/biossíntese , Paclitaxel/química , Paclitaxel/economia , Especificidade por Substrato , Taxoides/economia
2.
Genes (Basel) ; 10(11)2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31739571

RESUMO

Nicotine, the most abundant pyridine alkaloid in cultivated tobacco (Nicotiana tabacum L.), is a potent inhibitor of insect and animal herbivory and a neurostimulator of human brain function. Nicotine biosynthesis is controlled developmentally and can be induced by abiotic and biotic stressors via a jasmonic acid (JA)-mediated signal transduction mechanism involving members of the APETALA 2/ethylene-responsive factor (AP2/ERF) and basic helix-loop-helix (bHLH) transcription factor (TF) families. AP2/ERF and bHLH TFs work combinatorically to control nicotine biosynthesis and its subsequent accumulation in tobacco leaves. Here, we demonstrate that overexpression of the tobacco NtERF32, NtERF221/ORC1, and NtMYC2a TFs leads to significant increases in nicotine accumulation in T2 transgenic K326 tobacco plants before topping. Up to 9-fold higher nicotine production was achieved in transgenics overexpressing NtERF221/ORC1 under the control of a constitutive GmUBI3 gene promoter compared to wild-type plants. The constitutive 2XCaMV35S promoter and a novel JA-inducible 4XGAG promoter were less effective in driving high-level nicotine formation. Methyljasmonic acid (MeJA) treatment further elevated nicotine production in all transgenic lines. Our results show that targeted manipulation of NtERF221/ORC1 is an effective strategy for elevating leaf nicotine levels in commercial tobacco for use in the preparation of reduced risk tobacco products for smoking replacement therapeutics.


Assuntos
Nicotiana/metabolismo , Nicotina/biossíntese , Reguladores de Crescimento de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Fatores de Transcrição/genética , Acetatos/metabolismo , Alcaloides/biossíntese , Alcaloides/toxicidade , Anabasina/biossíntese , Anabasina/toxicidade , Ciclopentanos/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Sequências Hélice-Alça-Hélice/genética , Nicotina/análogos & derivados , Nicotina/economia , Nicotina/toxicidade , Oxilipinas/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas/genética , Piridinas/toxicidade , Nicotiana/genética , Produtos do Tabaco/economia , Produtos do Tabaco/toxicidade , Fatores de Transcrição/metabolismo
3.
Mol Biotechnol ; 60(7): 492-505, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29796788

RESUMO

Natural production of anti-cancer drug taxol from Taxus has proved to be environmentally unsustainable and economically unfeasible. Currently, bioengineering the biosynthetic pathway of taxol is an attractive alternative production approach. 10-deacetylbaccatin III-10-O-acetyl transferase (DBAT) was previously characterized as an acyltransferase, using 10-deacetylbaccatin III (10-DAB) and acetyl CoA as natural substrates, to form baccatin III in the taxol biosynthesis. Here, we report that other than the natural acetyl CoA (Ac-CoA) substrate, DBAT can also utilize vinyl acetate (VA), which is commercially available at very low cost, acylate quickly and irreversibly, as acetyl donor in the acyl transfer reaction to produce baccatin III. Furthermore, mutants were prepared via a semi-rational design in this work. A double mutant, I43S/D390R was constructed to combine the positive effects of the different single mutations on catalytic activity, and its catalytic efficiency towards 10-DAB and VA was successfully improved by 3.30-fold, compared to that of wild-type DBAT, while 2.99-fold higher than the catalytic efficiency of WT DBAT towards 10-DAB and Ac-CoA. These findings can provide a promising economically and environmentally friendly method for exploring novel acyl donors to engineer natural product pathways.


Assuntos
Acetiltransferases/genética , Alcaloides/biossíntese , Antineoplásicos Fitogênicos/biossíntese , Taxus/enzimologia , Acetiltransferases/química , Acetiltransferases/metabolismo , Alcaloides/economia , Antineoplásicos Fitogênicos/economia , Bioengenharia , Vias Biossintéticas , Biologia Computacional , Análise Custo-Benefício , Engenharia Genética , Modelos Moleculares , Mutagênese , Paclitaxel/biossíntese , Paclitaxel/economia , Especificidade por Substrato , Taxoides/economia , Taxoides/metabolismo , Taxus/química , Taxus/genética , Taxus/metabolismo , Compostos de Vinila/química , Compostos de Vinila/metabolismo
4.
J Photochem Photobiol B ; 161: 230-5, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27285814

RESUMO

The aim of current research was to evaluate the physiological adjustment in three medicinal herbs viz., Atropa acuminata, Lupinus polyphyllus and Hyoscyamus niger to the winter period characterised by intense UV flux in Kashmir valley across the North Western Himalaya. Quinolizidine (QA) and tropane alkaloid (TA) concentrations were analysed in these herbs thriving at two different altitudes via GC-MS and correlated by PCA analysis. This study investigated the hypothesis that UV reflectance and absorbance at low temperatures are directly related to disparity in alkaloid accumulation. Among QAs in L. polyphyllus, ammodendrine and lupanine accumulated at higher concentration and exhibited significant variation of 186.36% and 95.91% in ammodendrine and lupanine respectively in both sites. Tetrahydrohombifoline displayed non-significant variation of about 9.60% irrespective of sites. Among tropane alkaloid (TA), hyoscyamine was recorded as the most abundant constituent irrespective of the plant and site while apotropine accumulated in lesser quantity in A. acuminata than H. niger. However, apotropine demonstrated significant variation of 175% among both sites. The final concentration of quinolizidine (QA) and tropane alkaloid (TA) reflects the interplay between reflectance and absorbance of UV radiation response field. These findings suggest that spectral response of UV light contributes directly to alkaloid biosynthesis.


Assuntos
Alcaloides/análise , Atropa/química , Hyoscyamus/química , Lupinus/química , Raios Ultravioleta , Alcaloides/biossíntese , Atropa/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Hyoscyamus/metabolismo , Lupinus/metabolismo , Piperidinas/análise , Extratos Vegetais/química , Folhas de Planta/química , Folhas de Planta/metabolismo , Análise de Componente Principal , Piridinas/análise , Quinolizidinas/química , Esparteína/análogos & derivados , Esparteína/análise , Temperatura , Tropanos/química
5.
Curr Opin Biotechnol ; 25: 17-23, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24484876

RESUMO

Microbial production of plant natural products (PNPs), such as terpenoids, flavonoids from renewable carbohydrate feedstocks offers sustainable and economically attractive alternatives to their petroleum-based production. Rapid development of metabolic engineering and synthetic biology of microorganisms shows many advantages to replace the current extraction of these useful high price chemicals from plants. Although few of them were actually applied on a large scale for PNPs production, continuous research on these high-price chemicals and the rapid growing global market of them, show the promising future for the production of these PNPs by microorganisms with a more economic and environmental friendly way. Introduction of novel pathways and optimization of the native cellular processes by metabolic engineering of microorganisms for PNPs production are rapidly expanding its range of cell-factory applications. Here we review recent progress in metabolic engineering of microorganisms for the production of PNPs. Besides, factors restricting the yield improvement and application of lab-scale achievements to industrial applications have also been discussed.


Assuntos
Produtos Biológicos/metabolismo , Biotecnologia/métodos , Fermentação , Plantas/metabolismo , Alcaloides/biossíntese , Biotecnologia/economia , Plantas/genética , Terpenos/metabolismo
6.
Nat Prod Rep ; 29(10): 1176-200, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22907740

RESUMO

In the recent past, macromolecular crystallography has gone through substantial methodological and technological development. The purpose of this review is to provide a general overview of structural biology and its impact on enzyme structure/function analysis and illustrate how it is modifying the focus of research relevant to alkaloid biosynthesis.


Assuntos
Alcaloides/biossíntese , Ligases/metabolismo , Alcaloides/química , Medicina Tradicional Chinesa , Modelos Moleculares , Anotação de Sequência Molecular , Estrutura Molecular
7.
J Am Chem Soc ; 130(52): 17938-54, 2008 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-19035635

RESUMO

Full details are provided for the total synthesis of several members of the hapalindole family of natural products, including hapalindole Q, 12-epi-hapalindole D, 12-epi-fischerindole U, 12-epi-fischerindole G, 12-epi-fischerindole I, and welwitindolinone A. Use of the recently developed direct indole coupling enabled an efficient, practical, scalable, and protecting-group-free synthesis of each of these natural products. The original biosynthetic proposal is reviewed, and a revised biosynthetic hypothesis is suggested, validated by the above syntheses. The syntheses are also characterized by an adherence to the concept of "redox economy". Analogous to "atom economy" or "step economy", "redox economy" minimizes the superfluous redox manipulations within a synthesis; rather, the oxidation state of intermediates linearly and steadily increases throughout the course of the synthesis.


Assuntos
Alcaloides/síntese química , Indóis/síntese química , Alcaloides/biossíntese , Materiais Biomiméticos/química , Alcaloides Indólicos , Nitrilas/síntese química , Oxirredução , Estereoisomerismo
8.
Chem Biol ; 13(3): 309-17, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16638536

RESUMO

The 10beta-acetyltransferase on the biosynthetic pathway of the antineoplastic drug Taxol catalyzes the regiospecific transfer of the acetyl group of acetyl-coenzyme A (CoA) to 10-deacetylbaccatin III. We demonstrate that in addition to acetyl group transfer, the overexpressed enzyme also catalyzes the exchange of propionyl and n-butyryl from the corresponding CoA thioester to the hydroxyl group at C10 of the cosubstrate. Also, in vivo studies revealed that E. coli, producing endogenous acetyl-CoA and overexpressing the recombinant acetyltransferase, can convert exogenously supplied 10-deacetylbaccatin III to baccatin III. Potentially, this heterologous in vivo production method in bacteria could be optimized to couple various unnatural acyl-CoA analogs to myriad amino and/or hydroxyl acceptors by acyltransferase catalysis; conceivably, this process could facilitate the preparation of second-generation Taxols.


Assuntos
Acetiltransferases/metabolismo , Alcaloides/biossíntese , Escherichia coli/metabolismo , Taxoides/metabolismo , Acetilcoenzima A/metabolismo , Acetilação , Antineoplásicos Fitogênicos/biossíntese , Catálise , Cromatografia Líquida de Alta Pressão , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Modelos Químicos , Paclitaxel/biossíntese , Especificidade por Substrato , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA