Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 223
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
PLoS One ; 19(5): e0304113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38820335

RESUMO

Microbial degradation of tylosin (TYL) is a safe and environmentally friendly technology for remediating environmental pollution. Kurthia gibsonii (TYL-A1) and Klebsiella pneumonia (TYL-B2) were isolated from wastewater; degradation efficiency of the two strains combined was significantly greater than either alone and resulted in degradation products that were less toxic than TYL. With Polyvinyl alcohol (PVA)-sodium alginate (SA)-activated carbon (AC) used to form a bacterial immobilization carrier, the immobilized bacterial alliance reached 95.9% degradation efficiency in 1 d and could be reused for four cycles, with > 93% degradation efficiency per cycle. In a wastewater application, the immobilized bacterial alliance degraded 67.0% TYL in 9 d. There were significant advantages for the immobilized bacterial alliance at pH 5 or 9, with 20 or 40 g/L NaCl, or with 10 or 50 mg/L doxycycline. In summary, in this study, a bacterial consortium with TYL degradation ability was constructed using PVA-SA-AC as an immobilized carrier, and the application effect was evaluated on farm wastewater with a view to providing application guidance in environmental remediation.


Assuntos
Biodegradação Ambiental , Células Imobilizadas , Álcool de Polivinil , Tilosina , Águas Residuárias , Águas Residuárias/química , Águas Residuárias/microbiologia , Álcool de Polivinil/química , Células Imobilizadas/metabolismo , Alginatos/química , Alginatos/metabolismo , Poluentes Químicos da Água/metabolismo , Klebsiella pneumoniae/metabolismo , Antibacterianos , Carvão Vegetal/química
2.
Bioresour Technol ; 397: 130481, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395233

RESUMO

Brown algae are rich in biostimulants that not only stimulate the overall development and growth of plants but also have great beneficial effects on the whole soil-plant system. However, alginate, the major component of brown algae, is comparatively difficult to degrade. The cost of preparing alginate oligosaccharides (AOSs) is still too high to produce seaweed fertilizer. In this work, the marine bacterium Vibrio sp. B1Z05 is found to be capable of efficient alginate depolymerization and harbors an extended pathway for alginate metabolism. The B1Z05 extracellular cell-free supernatant exhibited great potential for AOS production at low cost, which, together with cellulase, can efficiently hydrolyze seaweed. The brown algal hydrolysis rates were significantly greater than those of the commercial alginate lyase product CE201, and the obtained seaweed extracts were rich in phytohormones. This work provides a low-cost but efficient strategy for the sustainable production of desirable AOSs and seaweed fertilizer.


Assuntos
Celulase , Phaeophyceae , Alga Marinha , Celulase/metabolismo , Hidrólise , Fertilizantes , Polissacarídeo-Liases/metabolismo , Alga Marinha/metabolismo , Alginatos/metabolismo , Oligossacarídeos/metabolismo
3.
Int J Biol Macromol ; 263(Pt 1): 130253, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38368976

RESUMO

This study involves the synthesis of a magnetic­sodium alginate bio-composite embedded with carbon dots, designed to eliminate pollutants like dyes and metal ions and tackle environmental issues. The modified particles are effectively incorporated into the biopolymers for improved adsorption and regeneration performance using an economically viable and environmentally sustainable process. The composite's surface morphology and chemical structure have been extensively characterized through various analytical techniques. It has been found that CD-modified nanoparticles demonstrate good dispersion, abundance in functional groups, and excellent adsorption performance. The adsorption process variables have been optimized using Response Surface Methodology (RSM), resulting in a maximum adsorption capacity of 232.44 mg/g achieved under optimal conditions. An Artificial Neural Network (ANN) model with a topology of 3-5-5-1 is constructed to predict the adsorption capacity of composite, exhibiting superior predictive performance. The statistical physical model was also performed to understand the adsorption mechanism and orientation of dye molecules attached to the surface of the composite. The adsorption capacity using statistical physical method was found to be 467.57 mg/g. The composite exhibits good adsorption and regeneration performance in the column adsorption study. Furthermore, a detailed cost analysis of the synthesized composite was performed, ensuring its economic viability in real-world applications.


Assuntos
Carbono , Poluentes Químicos da Água , Alginatos/química , Água , Corantes , Adsorção , Redes Neurais de Computação , Poluentes Químicos da Água/química , Cinética , Concentração de Íons de Hidrogênio
4.
Int J Biol Macromol ; 259(Pt 2): 129278, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211905

RESUMO

This study aimed to develop microencapsulation technology using alginate to improve the viability and performance of Trichoderma harzianum. The method of ionic gelation was used to prepare the microparticles, and the efficiency of encapsulation was estimated to be 99%. The average size of the prepared microspheres was 2600 µm (wet) and 1000 µm (dry). Scanning electron microscopy revealed that the microspheres were approximately spherical. Fourier transform infrared spectrophotometer analysis indicated an interaction between T. harzianum and the microspheres. The results of temperature resistance and light stability against ultraviolet radiation emphasized the positive impact of microencapsulation in improving the viability and resistance of T. harzianum compared to the non-microencapsulated state. The disease percentage of Rhizoctonia solani and Sclerotinia sclerotiorum in plants treated with microencapsulated T. harzianum microcapsules was 8.88 % and 20 % respectively, but in the control group was 73.33 % (p ≤ 0.05).


Assuntos
Ascomicetos , Hypocreales , Rhizoctonia , Solanum lycopersicum , Trichoderma , Alginatos , Raios Ultravioleta , Doenças das Plantas/prevenção & controle
5.
J Microencapsul ; 41(1): 1-17, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37966469

RESUMO

AIM: This study aimed to prepare, characterise, and evaluate the antidiabetic activity of Coccinia grandis (L.) extracts encapsulated alginate nanoparticles. METHODS: Alginate nanoparticles were prepared using the ionic gelation method and characterised by encapsulation efficiency %w/w, loading capacity %w/w, particle size analysis, zeta potential, Fourier transform infra-red spectroscopy (FTIR), and scanning electron microscopy (SEM). In vitro antidiabetic activity was also evaluated. RESULTS: Encapsulation efficiency %w/w, loading capacity %w/w, mean diameter, zeta potential of C. grandis encapsulated alginate nanoparticles ranged from 10.51 ± 0.51 to 62.01 ± 1.28%w/w, 0.39 ± 0.04 to 3.12 ± 0.11%w/w, 191.9 ± 76.7 to 298.9 ± 89.6 nm, -21.3 ± 3.3 to -28.4 ± 3.4 mV, respectively. SEM and FTIR confirmed that particles were in nano range with spherical shape and successful encapsulation of plant extracts into an alginate matrix. The antidiabetic potential of aqueous extract of C. grandis encapsulated alginate nanoparticles (AqCG-ANP) exhibited inhibition in α-amylase, α-glucosidase and dipeptidyl peptidase IV enzymes of 60.8%c/c, 19.1%c/c, and 30.3%c/c, respectively, compared to the AqCG. CONCLUSION: The AqCG-ANP exerted promising antidiabetic potential as an antidiabetic drug lead.


Assuntos
Cucurbitaceae , Nanopartículas , Alginatos/química , Hipoglicemiantes/farmacologia , Nanopartículas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Cucurbitaceae/química , Espectroscopia de Infravermelho com Transformada de Fourier
6.
J Sci Food Agric ; 104(4): 2458-2466, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37975168

RESUMO

BACKGROUND: Calcium alginate gels are widely used to encapsulate active compounds. Some characteristic parameters of these gels are necessary to describe the release of active compounds through mechanistic mathematical models. In this work, transport and kinetics properties of calcium alginate gels were determined through simple experimental techniques. RESULTS: The weight-average molecular weight ( M ¯ w = 192 × 103 Da) and the fraction of residues of α-l-guluronic acid ( F G = 0.356) of sodium alginate were determined by capillary viscometry and 1 H-nuclear magnetic resonance at 25 °C, respectively. Considering the half egg-box model, both values were used to estimate the molecular weight of calcium alginate as M g = 2.02 × 105 Da. An effective diffusion coefficient of water ( D eff , w = 2.256 × 10-9 m2 s-1 ) in calcium alginate was determined using a diffusion cell at 37 °C. Finally, a kinetics constant of depolymerization ( k m = 9.72 × 10-9 m3 mol-1 s-1 ) of calcium alginate was obtained considering dissolution of calcium to a medium under intestinal conditions. CONCLUSION: The experimental techniques used are simple and easily reproducible. The obtained values may be useful in the design, production, and optimization of the alginate-based delivery systems that require specific release kinetics of the encapsulated active compounds. © 2023 Society of Chemical Industry.


Assuntos
Alginatos , Imageamento por Ressonância Magnética , Alginatos/química , Géis/química , Espectroscopia de Ressonância Magnética , Modelos Teóricos , Cálcio/química , Ácidos Hexurônicos/química , Ácido Glucurônico/química
7.
Food Chem ; 438: 137957, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37976877

RESUMO

In order to obtain innovative, high-quality biodegradable packaging, double-layer films based on furcellaran and gelatin, enriched with plant extracts were created. The films were assessed considering their potential utility, applications and environmental impact. The mechanical properties over a period of nine months were studied and it was noted that the passing of time had a beneficial effect on these parameters. The antioxidant properties was also examined, with the highest results obtained using the DPPH and metal chelating activity methods for GE (76.64 % and 9.85 % respectively), while this film showed the lowest FRAP value (5.99 %) compared to the highest obtained for DTE (52.62 %). For the first time, the possibility of using the double-layer active FUR/GEL film as packaging for salad-dressing was evaluated, but no improvement in parameters was observed regardless of the extract used. The environmental impact analysis showed the ability to completely decomposed in vermicompost within several days.


Assuntos
Embalagem de Alimentos , Saladas , Embalagem de Alimentos/métodos , Alginatos/química , Bandagens
8.
J Environ Manage ; 351: 119916, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38150926

RESUMO

As a promising solution to address the global challenge of freshwater scarcity, solar-powered interfacial steam generation has undergone notable advancements. This study introduces a novel solar-driven interfacial evaporation membrane (ZnIn2S4@SiO2/ACSA, ZSAS) comprising a ZnIn2S4@SiO2 composite and a black sodium alginate aerogel infused with activated carbon. The ZSAS membrane demonstrates exceptional light absorption and thermal insulation, leading to elevated surface temperatures and reduced heat dissipation into the bulk water. Furthermore, the incorporation of AC reinforces the mechanical properties of the ZSAS membrane and enhances the water purification performance. These collective features result in an impressive evaporation rate of 1.485 kg m-2 h-1 and a high photothermal conversion efficiency of 91.2% under 1 sun irradiation for the optimal ZSAS membrane. Moreover, the optimal ZSAS membrane can effectively remove salts, heavy metal ions, and organic pollutants, benefitting from its superior evaporation separation effect and the photocatalytic properties of the ZnIn2S4@SiO2 composite.


Assuntos
Energia Solar , Purificação da Água , Análise Custo-Benefício , Dióxido de Silício , Alginatos , Carvão Vegetal
9.
Curr Eye Res ; 48(12): 1112-1121, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37669915

RESUMO

PURPOSE: Loss of corneal transparency is one of the major causes of visual loss, generating a considerable health and economic burden globally. Corneal transplantation is the leading treatment procedure, where the diseased cornea is replaced by donated corneal tissue. Despite the rise of cornea donations in the past decade, there is still a huge gap between cornea supply and demand worldwide. 3D bioprinting is an emerging technology that can be used to fabricate tissue equivalents that resemble the native tissue, which holds great potential for corneal tissue engineering application. This study evaluates the manufacturability of 3D bioprinted acellular corneal grafts using low-cost equipment and software, not necessarily designed for bioprinting applications. This approach allows access to 3D printed structures where commercial 3D bioprinters are cost prohibitive and not readily accessible to researchers and clinicians. METHODS: Two extrusion-based methods were used to 3D print acellular corneal stromal scaffolds with collagen, alginate, and alginate-gelatin composite bioinks from a digital corneal model. Compression testing was used to determine moduli. RESULTS: The printed model was visually transparent with tunable mechanical properties. The model had central radius of curvature of 7.4 mm, diameter of 13.2 mm, and central thickness of 0.4 mm. The compressive secant modulus of the material was 23.7 ± 1.7 kPa at 20% strain. 3D printing into a concave mold had reliability advantages over printing into a convex mold. CONCLUSIONS: The printed corneal models exhibited visible transparency and a dome shape, demonstrating the potential of this process for the preparation of acellular partial thickness corneal replacements. The modified printing process presented a low-cost option for corneal bioprinting.


Assuntos
Bioimpressão , Humanos , Bioimpressão/métodos , Estudos de Viabilidade , Reprodutibilidade dos Testes , Substância Própria/cirurgia , Engenharia Tecidual/métodos , Alginatos , Alicerces Teciduais/química , Hidrogéis/química
10.
Microb Cell Fact ; 22(1): 179, 2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689719

RESUMO

BACKGROUND: Alginate oligosaccharides (AOs) are the degradation products of alginate, a natural polysaccharide abundant in brown algae. AOs generated by enzymatic hydrolysis have diverse bioactivities and show broad application potentials. AOs production via enzymolysis is now generally with sodium alginate as the raw material, which is chemically extracted from brown algae. In contrast, AOs production by direct degradation of brown algae is more advantageous on account of its cost reduction and is more eco-friendly. However, there have been only a few attempts reported in AOs production from direct degradation of brown algae. RESULTS: In this study, an efficient Laminaria japonica-decomposing strain Pseudoalteromonas agarivorans A3 was screened. Based on the secretome and mass spectrum analyses, strain A3 showed the potential as a cell factory for AOs production by secreting alginate lyases to directly degrade L. japonica. By using the L. japonica roots, which are normally discarded in the food industry, as the raw material for both fermentation and enzymatic hydrolysis, AOs were produced by the fermentation broth supernatant of strain A3 after optimization of the alginate lyase production and hydrolysis parameters. The generated AOs mainly ranged from dimers to tetramers, among which trimers and tetramers were predominant. The degradation efficiency of the roots reached 54.58%, the AOs production was 33.11%, and the AOs purity was 85.03%. CONCLUSION: An efficient, cost-effective and green process for AOs production directly from the underutilized L. japonica roots by using strain A3 was set up, which differed from the reported processes in terms of the substrate and strain used for fermentation and the AOs composition. This study provides a promising platform for scalable production of AOs, which may have application potentials in industry and agriculture.


Assuntos
Alginatos , Laminaria , Análise Custo-Benefício , Oligossacarídeos
11.
Food Chem ; 428: 136759, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37418883

RESUMO

To improve the quality of multi-layer film, four-layer films based on furcellaran and active ingredients: gelatin hydrolysate, curcumin, capsaicin, montmorillonite and AgNPs, were produced in an innovative manner. The films were characterised by SEM and AFM analysis. Along with an increase in the concentration of active ingredients, the structure of the film becomes less homogeneous, which may affect the functional properties. The objective of the study was to analyse changes in the functional properties of the newly-obtained films and to verify their potential as packaging materials for fish products. With the increase in active ingredient concentration, water properties also improved, but there were no noticeable significant effects on mechanical properties. For antioxidant properties, the obtained values were within 1.04-2.74 mM Trolox/mg (FRAP) and 7.67-40.49% (DPPH). The obtained multi-layer films were examined with regard to the shelf-life of salmon. For this purpose, salmon fillets were packed in films having good antioxidant and functional properties. The films were effective in microorganism growth inhibition responsible for fillet spoilage during storage. The microorganism number in the active film-stored samples was lower by 0.13 log CFU/g on day 12 versus the control. However, film application did not retard lipid oxidation in the salmon fillets. Nonetheless, the films show great potential as active packaging materials, extending the shelf-life of the packed foods.


Assuntos
Antioxidantes , Embalagem de Alimentos , Animais , Antioxidantes/química , Alginatos/química , Gomas Vegetais/química
12.
Molecules ; 28(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37446946

RESUMO

Grape pomace is a by-product of winemaking characterized by a rich chemical composition from which phenolics stand out. Phenolics are health-promoting agents, and their beneficial effects depend on their bioaccessibility, which is influenced by gastrointestinal digestion. The effect of encapsulating phenol-rich grape pomace extract (PRE) with sodium alginate (SA), a mixture of SA with gelatin (SA-GEL), and SA with chitosan (SA-CHIT) on the bioaccessibility index (BI) of phenolics during simulated digestion in vitro was studied. A total of 27 individual phenolic compounds (IPCs) were quantified by UHPLC. The addition of a second coating to SA improved the encapsulation efficiency (EE), and the highest EE was obtained for SA-CHIT microbeads (56.25%). Encapsulation affected the physicochemical properties (size, shape and texture, morphology, crystallinity) of the produced microbeads, which influenced the delivery of phenolics to the intestine and their BI. Thus, SA-GEL microbeads had the largest size parameters, as confirmed by scanning electron microscopy (SEM), and the highest BI for total phenolic compounds and IPCs (gallic acid, 3,4-dihydroxybenzoic acid and o-coumaric acid, epicatechin, and gallocatechin gallate) ranged from 96.20 to 1011.3%. The results suggest that encapsulated PRE has great potential to be used as a functional ingredient in products for oral administration.


Assuntos
Fenóis , Extratos Vegetais , Vitis , Alginatos/química , Disponibilidade Biológica , Cápsulas , Cromatografia Líquida de Alta Pressão , Digestão , Gelatina/química , Microscopia Eletrônica de Varredura , Microesferas , Tamanho da Partícula , Fenóis/química , Fenóis/farmacocinética , Extratos Vegetais/química , Extratos Vegetais/farmacocinética , Vitis/química , Técnicas In Vitro
13.
Pharm Dev Technol ; 28(7): 585-594, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37310754

RESUMO

PURPOSE: This work aimed to fabricate alginate based in-situ gelling matrix of vildagliptin improved by calcium and carboxy methyl cellulose (CMC) for appropriate adjustment of the onset and duration of action. This easy-to-swallow thickened liquid preparation aimed to improve compliance for dysphagic or elderly diabetic patients. METHODS: Vildagliptin dispersions containing alginate were fabricated in the presence or absence of calcium chloride to assess the effect of calcium ion, then a matrix containing 1.5% w/v of sodium alginate with calcium was further examined after the addition of CMC with different concentrations ranging from 0.1% to 0.3%. The viscosity, gelling forming property, Differential scanning calorimetry, and in-vitro drug release were assessed before monitoring the hypoglycemic effect of the selected formulation. RESULTS: In-situ gel matrixes were fabricated at gastric pH with and without calcium ions. The best formula concerning viscosity and the gel-forming property was achieved with higher CMC concentrations, which in turn decreased the rate of vildagliptin release in stimulated gastric pH. In-vivo results confirmed the extended hypoglycemic effect of the vildagliptin in-situ gelling matrix compared to the vildagliptin aqueous solution. CONCLUSION: This study represents a green polymeric-based in-situ gel as a liquid oral retarded release preparation intended for reducing dose frequency, easier administration of vildagliptin, and improving compliance in geriatric and dysphagic diabetic patients.


Assuntos
Diabetes Mellitus , Polímeros , Humanos , Idoso , Preparações de Ação Retardada/química , Vildagliptina , Cálcio/química , Viscosidade , Hipoglicemiantes/uso terapêutico , Alginatos/química , Géis/química
14.
Biomater Adv ; 149: 213414, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37031611

RESUMO

The formulation of hydrogels that meet the necessary flow characteristics for their extrusion-based 3D printing while providing good printability, resolution, accuracy and stability, requires long development processes. This work presents the technological development of a hydrogel-based ink of Laponite and alginate and evaluates its printing capacity. As a novelty, this article reports a standardizable protocol to quantitatively define the best printing parameters for the development of novel inks, providing new printability evaluation parameters such as the Printing Accuracy Escalation Index. As a result, this research develops a printable Laponite-Alginate hydrogel that presents printability characteristics. This ink is employed for the reproducible manufacture of 3D printed scaffolds with versatile and complex straight or curved printing patterns for a better adaptation to different final applications. Obtained constructs prove to be stable over time thanks to the optimization of a curing process. In addition, the study of the swelling and degradation behavior of the Laponite and alginate 3D printed scaffolds in different culture media allows the prediction of their behavior in future in vitro or in vivo developments. Finally, this study demonstrates the absence of cytotoxicity of the printed formulations, hence, setting the stage for their use in the field of biomedicine.


Assuntos
Hidrogéis , Tinta , Alginatos , Alicerces Teciduais , Impressão Tridimensional
15.
Int J Biol Macromol ; 240: 124474, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37072063

RESUMO

The current study was conducted to develop biodegradable films with matrix composed from carboxymethyl cellulose (CMC), sodium alginate (SA) and different concentrations from Thymus vulgaris purified leaves extract (TVE). The color properties, physical properties, shape of surface, manners of crystallinity, mechanical properties and thermal properties of produced films were investigated. The continuous addition of TVE up to 1.6 % inside films matrix imparted the yellow color of extract that increased opacity to 2.98 and reduced moisture, swelling, solubility and water vapor permeability (WVP) of films up to 10.31 %, 30.17 %, 20.18 % and (1.12× 10-10 g.m-1 s-1 pa-1), respectively. Furthermore, the surface micrographs showed smoother surface after using small concentrations of TVE and turned to irregular with rough surface at higher concentrations. The FT-IR analysis indicated typically bands that demonstrated physical interaction between TVE extract and CMC/SA matrix. The fabricated films showed suitable thermal stability with decreasing trend by incorporation of TVE inside CMC/SA films. Furthermore, the developed CMC/SA/TVE2 showed significant effects on preserving the levels of moisture content, titrable acidity, force to puncture and sensory properties of cheddar cheese during cold storage days compared with commercial packaging materials.


Assuntos
Anti-Infecciosos , Thymus (Planta) , Alginatos , Antioxidantes/farmacologia , Carboximetilcelulose Sódica , Espectroscopia de Infravermelho com Transformada de Fourier , Embalagem de Alimentos , Anti-Infecciosos/farmacologia , Permeabilidade , Extratos Vegetais/farmacologia
16.
Int J Biol Macromol ; 239: 124185, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36977443

RESUMO

Incorporating single or combined nanofillers in polymeric matrices is a promising approach for developing antimicrobial materials for applications in wound healing and packaging etc. This study reports a facile fabrication of antimicrobial nanocomposite films using biocompatible polymers sodium carboxymethyl cellulose (CMC) and sodium alginate (SA) reinforced with nanosilver (Ag) and graphene oxide (GO) using the solvent casting approach. Eco-friendly synthesis of Ag nanoparticles within a size range of 20-30 nm was carried out within the polymeric solution. GO was introduced into the CMC/SA/Ag solution in different weight percentages. The films were characterized by UV-Vis, FT-IR, Raman, XRD, FE-SEM, EDAX, and TEM. The results indicated the enhanced thermal and mechanical performance of CMC/SA/Ag-GO nanocomposites with increased GO weight %. The antibacterial efficacy of the fabricated films was evaluated on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The CMC/SA/Ag-GO2% nanocomposite exhibited the highest zone of inhibition of 21.30 ± 0.70 mm against E. coli and 18.00 ± 1.00 mm against S. aureus. The CMC/SA/Ag-GO nanocomposites exhibited excellent antibacterial activity as compared to CMC/SA and CMC/SA-Ag due to the synergetic bacterial growth inhibition activities of the GO and Ag. The cytotoxic activity of the prepared nanocomposite films was also assessed to investigate their biocompatibility.


Assuntos
Nanopartículas Metálicas , Nanocompostos , Staphylococcus aureus , Alginatos/farmacologia , Prata/química , Nanopartículas Metálicas/química , Carboximetilcelulose Sódica/química , Escherichia coli , Espectroscopia de Infravermelho com Transformada de Fourier , Antibacterianos/farmacologia , Antibacterianos/química , Nanocompostos/química
17.
Int J Biol Macromol ; 234: 123637, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36775227

RESUMO

A ternary composite (SA/GE@BC) for cadmium removal from wastewater was successfully prepared. The alginate and gelatin were successfully impregnated with biochar (derived from water caltrop shell) to improve the recyclability and adsorption capacity. The prepared SA/GE@BC demonstrated a good removal for cadmium at pH 4.0-7.0 conditions. The cadmium removal increased with increasing SA/GE@BC dosage. The adsorption kinetics process was well consistent with the pseudo-second order model. And the Langmuir model (R2 > 0.99) best described the isotherm data. The calculated adsorption capacity reached a maximum of 86.25 mg/g. The adsorption was a spontaneous and endothermic process, and elevating temperature favored the removal of cadmium. The alginate-gelatin composition enhanced the number of oxygenated functional groups and exchangeable ions. This enhanced the removal of cadmium by complexation and cation ion exchange. Also, the removal mechanism of cadmium on SA/GE@BC involved electrostatic attraction and π-bond coordination. The saturated SA/GE@BC could be well regenerated by 0.1 M HNO3. All these results suggested the preparation of SA/GE@BC could effectively use waste resources to produce highly effective adsorbents for removing cadmium from contaminated water.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Cádmio/química , Gelatina , Alginatos , Água , Poluentes Químicos da Água/química , Purificação da Água/métodos , Carvão Vegetal/química , Adsorção , Cinética
18.
J Biomater Appl ; 37(8): 1470-1485, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36318091

RESUMO

Limitations in liver transplantation and advances in cell therapy methods motivated us to study primary hepatocytes. The main challenge in using primary hepatocytes for liver regeneration is that they lose their functionalities. We aimed to develop a controlled-shape hydrogel and apply the conditioned-media of mesenchymal stromal cells (CM-MSCs) to improve in vitro hepatocyte functions. In this experimental study, following rat hepatocyte isolation by collagenase perfusion and collection of human umbilical cord CM-MSCs, a simple and precise system called electrodeposition was used to produce the patterned alginate hydrogel. To reduce the cytopathic effects, we used an indirect electrodeposition method. For characterizing this structure, mechanical properties, Fourier-transform infrared spectroscopy (FTIR), water uptake, in-vitro degradation, and hydrogel stability were studied. Urea synthesis as a basic function of hepatocytes was assessed in five different groups. Scanning electron microscope (SEM) was utilized to evaluate the primary hepatocyte morphology and their dispersion in the fabricated structure. We observed a significant increase in urea synthesis in the presence of CM-MSCs in patterned hydrogel alginate compared to 2D culture on day 3 (p<0.05). However, there was no significant difference in simple and patterned hydrogel on day 2. We found that the electrodeposition method is appropriate for the rapid fabricating of hydrogel structures with arbitrary patterns for 3D cell culture.


Assuntos
Alginatos , Hidrogéis , Ratos , Humanos , Animais , Hidrogéis/metabolismo , Meios de Cultivo Condicionados , Alginatos/química , Ureia , Hepatócitos , Cordão Umbilical , Sódio/metabolismo
19.
Int J Biol Macromol ; 225: 605-614, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36410534

RESUMO

Alginate-based microcapsule has becoming a promising carrier for probiotic encapsulation due to the improved stress resistant ability. Besides the physical protection of microcapsules, bacterial quorum sensing (QS) is another prominent factor affecting microbial stress resistance in microcapsules. In the present study, Vibrio harveyi cells were entrapped and proliferated into cell aggregates in alginate-based microcapsules. The microenvironment composed of cells and biomacromolecules was regulated by the diameter, alginate concentration and core state of microcapsule. Then the effect of microenvironment on bacterial QS capacity was investigated, including bioluminescence, autoinducers (AIs) production and QS related genes expression. The highest diameter of 1200 µm and highest alginate concentration of 2.0 % w/v under the investigation range presented strongest QS capacity, and the maintenance of hydrogel core could enhance bacterial QS. Moreover, the mechanism analysis revealed that the formed biofilm on the surface of cell aggregates hampered the outward transfer of AIs, and the local AIs inside the cell aggregates induced stronger bacteria QS by close-range interaction. As a whole, these findings are helpful to guide the technological development and optimization of microencapsulated probiotics with stronger stress resistance, and the potential application in food, dairy, wastewater treatment and biosensor.


Assuntos
Alginatos , Percepção de Quorum , Cápsulas/farmacologia , Alginatos/farmacologia , Biofilmes
20.
J Biomater Sci Polym Ed ; 34(5): 565-586, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36218277

RESUMO

Today, polymer systems can be formed to respond to single stimuli or multiple stimuli by changing their properties. The use of these systems, which are designed to be sensitive to stimuli, is expanding in a wide range of applications. Herein, microspheres of sodium alginate (NaAlg) and hydroxypropyl cellulose (HPC) sensitive to dual stimuli for the controlled release of model drug paracetamol were produced by the ionotropic gelation method in the presence of Zn2+ ions. FTIR, DSC, TGA, SEM, and particle size measurements were used to describe the blend microspheres. Low critical solution temperatures (LCST) of polymer blends at different ratios were determined and the biggest change according to the LCST value of HPC was found to be approximately 1-2 °C lower than 41 °C in microspheres with a NaAlg/HPC ratio of 50/50. In vitro release experiments of paracetamol from microspheres were carried out in a gastrointestinal tract simulation environment at two different temperatures (37 °C and 47 °C). From the release profiles, paracetamol release varied depending on the NaAlg/HPC ratio, the paracetamol content in the microspheres, the exposure time to Zn2+ ions, and the pH of the medium. Among the microsphere formulations, the highest entrapment efficiency was 57.86%, obtained for B7 formulation microspheres with a NaAlg/HPC ratio of 70/30, a paracetamol loading percentage of 20%, and a crosslinking time of 5 min.RESEARCH HIGHLIGHTSMicrospheres of sodium alginate (NaAlg) and hydroxypropyl cellulose (HPC) sensitive to dual stimuli for the controlled release of model drug paracetamol were produced by the ionotropic gelation method in the presence of Zn2+ ions.LCST values of the microspheres with a NaAlg/HPC ratio of 50/50 were significantly lower by 1-2 °C than the LCST value of HPC, and the release results supported the temperature sensitivity of the microspheres.Among the microsphere formulations, the highest entrapment efficiency was 57.86% obtained for B7 formulation microspheres.These microspheres can be used as a temperature-sensitive drug delivery system in the biomedical field and also as an encapsulation system of cancer drugs for cancer treatment modalities such as hyperthermia.


Assuntos
Acetaminofen , Polímeros , Preparações de Ação Retardada/química , Temperatura , Microesferas , Cinética , Alginatos/química , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA