Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Res Notes ; 10(1): 105, 2017 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-28222763

RESUMO

BACKGROUND: Renewable biopolymers, such as cellulose, starch and chitin are highly resistance to enzymatic degradation. Therefore, there is a need to upgrade current degradation processes by including novel enzymes. Lytic polysaccharide mono-oxygenases (LPMOs) can disrupt recalcitrant biopolymers, thereby enhancing hydrolysis by conventional enzymes. However, novel LPMO families are difficult to identify using existing methods. Therefore, we developed a novel profile Hidden Markov model (HMM) and used it to mine genomes of ascomycetous fungi for novel LPMOs. RESULTS: We constructed a structural alignment and verified that the alignment was correct. In the alignment we identified several known conserved features, such as the histidine brace and the N/Q/E-X-F/Y motif and previously unidentified conserved proline and glycine residues. These residues are distal from the active site, suggesting a role in structure rather than activity. The multiple protein alignment was subsequently used to build a profile Hidden Markov model. This model was initially tested on manually curated datasets and proved to be both sensitive (no false negatives) and specific (no false positives). In some of the genomes analyzed we identified a yet unknown LPMO family. This new family is mostly confined to the phyla of Ascomycota and Basidiomycota and the class of Oomycota. Genomic clustering indicated that at least some members might be involved in the degradation of ß-glucans, while transcriptomic data suggested that others are possibly involved in the degradation of pectin. CONCLUSIONS: The newly developed profile hidden Markov Model was successfully used to mine fungal genomes for a novel family of LPMOs. However, the model is not limited to bacterial and fungal genomes. This is illustrated by the fact that the model was also able to identify another new LPMO family in Drosophila melanogaster. Furthermore, the Hidden Markov model was used to verify the more distant blast hits from the new fungal family of LPMOs, which belong to the Bivalves, Stony corals and Sea anemones. So this Hidden Markov model (Additional file 3) will help the broader scientific community in identifying other yet unknown LPMOs.


Assuntos
Mineração de Dados , Proteínas Fúngicas/metabolismo , Genoma Fúngico , Cadeias de Markov , Oxigenases de Função Mista/metabolismo , Motivos de Aminoácidos , Animais , Ascomicetos/classificação , Ascomicetos/enzimologia , Ascomicetos/genética , Basidiomycota/classificação , Basidiomycota/enzimologia , Basidiomycota/genética , Biodegradação Ambiental , Bivalves/enzimologia , Bivalves/genética , Celulose/metabolismo , Quitina/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Proteínas Fúngicas/genética , Hidrólise , Oxigenases de Função Mista/genética , Modelos Moleculares , Oomicetos/classificação , Oomicetos/enzimologia , Oomicetos/genética , Filogenia , Anêmonas-do-Mar/enzimologia , Anêmonas-do-Mar/genética , Alinhamento de Sequência , Amido/metabolismo
2.
Curr Biol ; 22(20): 1951-6, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-23022064

RESUMO

Hox genes are renowned for patterning animal development, with widespread roles in developmental gene regulation. Despite this importance, their evolutionary origin remains obscure, due to absence of Hox genes (and their evolutionary sisters, the ParaHox genes) from basal lineages and because the phylogenies of these genes are poorly resolved. This has led to debate about whether Hox and ParaHox genes originated coincidently with the origin of animals or instead evolved after the divergence of the earliest animal lineages. Here we use genomic synteny and Monte Carlo-based simulations to resolve Hox/ParaHox origins, our approach being independent of poorly resolved homeodomain phylogenies and better able to accommodate gene loss. We show Trox-2 of placozoans occupies a ParaHox locus. In addition, a separate locus sharing synteny and hence homology with human Hox loci exists in the placozoan genome, but without a Hox-like gene in it. We call this second locus a "ghost" Hox locus, because it is homologous to the human Hox loci, but does not itself contain a Hox gene. Extending our approach to sponges, we discover distinct ghost Hox and ParaHox loci. Thus, distinct Hox and ParaHox loci were present in the last common ancestor of all living animal lineages.


Assuntos
Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox , Poríferos/genética , Anêmonas-do-Mar/genética , Animais , Humanos , Método de Monte Carlo , Filogenia , Placozoa/genética , Sintenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA