Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731845

RESUMO

Moringa oleifera leaves are rich sources of bioactive compounds with potential health benefits, including antioxidants and anti-inflammatory agents. Pressurized liquid extraction (PLE) stands out as a promising technique for effectively extracting valuable compounds from natural sources. In this study, we aimed to optimize PLE parameters, such as temperature, extraction duration, and pressure, to maximize bioactive compound (polyphenols, flavonoids, and ascorbic acid) yield from M. oleifera leaves and evaluate their antioxidant and anti-inflammatory activities. According to the outcomes of this research, the maximum achieved total polyphenol content was 24.10 mg gallic acid equivalents (GAE)/g of dry weight (dw), and the total flavonoid content was increased up to 19.89 mg rutin equivalents (RtE)/g dw. Moreover, after HPLC-DAD analysis, neochlorogenic and chlorogenic acids, catechin and epicatechin, rutin, and narirutin were identified and quantified. As far as the optimum ascorbic acid content is concerned, it was found to be 4.77 mg/g dw. The antioxidant activity was evaluated by three different methods: ferric reducing antioxidant power (FRAP), the DPPH method, and the anti-hydrogen peroxide activity (AHPA) method, resulting in 124.29 µmol ascorbic acid equivalent (AAE)/g dw, 131.28 µmol AAE/g dw, and 229.38 µmol AAE/g dw values, respectively. Lastly, the albumin denaturation inhibition was found to be 37.54%. These findings underscore the potential of PLE as an efficient extraction method for preparing extracts from M. oleifera leaves with the maximum content of bioactive compounds.


Assuntos
Antioxidantes , Moringa oleifera , Extratos Vegetais , Folhas de Planta , Moringa oleifera/química , Folhas de Planta/química , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Flavonoides/isolamento & purificação , Flavonoides/análise , Flavonoides/química , Flavonoides/farmacologia , Polifenóis/isolamento & purificação , Polifenóis/farmacologia , Polifenóis/análise , Polifenóis/química , Ácido Ascórbico/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Cromatografia Líquida de Alta Pressão/métodos , Pressão , Extração Líquido-Líquido/métodos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação
2.
Drug Dev Ind Pharm ; 50(5): 460-469, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38602337

RESUMO

OBJECTIVE: Ferulic acid (FA) is a promising nutraceutical molecule which exhibits antioxidant and anti-inflammatory properties, but it suffers from poor solubility and bioavailability. In the presented study, FA nanoemulsions were prepared to potentiate the therapeutic efficacy of FA in prevention of gastric ulcer. METHODS: FA nanoemulsions were prepared, pharmaceutically characterized, and the selected nanoemusion was tested for its ulcer-ameliorative properties in rats after induction of gastric ulcer using ethanol, by examination of stomach tissues, assessment of serum IL-1ß and TNF-α, assessment of nitric oxide, prostaglandin E2, glutathione, catalase and thiobarbituric acid reactive substance in stomach homogenates, as well as histological and immunohistochemical evaluation. RESULTS: Results revealed that the selected FA nanoemulsion showed a particle size of 90.43 nm, sustained release of FA for 8 h, and better in vitro anti-inflammatory properties than FA. Moreover, FA nanoemulsion exhibited significantly better anti-inflammatory and antioxidant properties in vivo, and the gastric tissue treated with FA nanoemulsion was comparable to the normal control upon histological and immunohistochemical evaluation. CONCLUSION: Findings suggest that the prepared ferulic acid nanoemulsion is an ideal anti-ulcer system, which is worthy of further investigations.


Assuntos
Antiulcerosos , Antioxidantes , Ácidos Cumáricos , Emulsões , Nanopartículas , Úlcera Gástrica , Animais , Ácidos Cumáricos/farmacologia , Ácidos Cumáricos/química , Emulsões/química , Úlcera Gástrica/tratamento farmacológico , Ratos , Antioxidantes/farmacologia , Antioxidantes/química , Masculino , Antiulcerosos/farmacologia , Antiulcerosos/administração & dosagem , Antiulcerosos/química , Antiulcerosos/farmacocinética , Nanopartículas/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/administração & dosagem , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patologia , Ratos Wistar , Tamanho da Partícula , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-1beta/metabolismo , Solubilidade , Óxido Nítrico/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-38258776

RESUMO

BACKGROUND: Hordeum vulgare, commonly known as Barley grass, is a historically significant cultivated plant with profound implications for societies, agricultural sciences, and human nutrition. It has been valued for both sustenance and its potential medicinal properties. OBJECTIVES: This study aims to comprehensively investigate the medicinal properties of Hordeum vulgare, focusing on its potential therapeutic benefits and anti-inflammatory properties. Additionally, we seek to quantify and compare the phytochemical content of two distinct extracts: Barley Grass Hexane Extract (BGHE) and Barley grass aqueous extract (BGAQ). METHODS: We quantified the phytochemical contents of BGHE and BGAQ and evaluated their anti-inflammatory effects using UV spectroscopy at 560 nm, coupled with the RBC membrane stabilization technique. Subsequently, we conducted in silico studies to assess the in vitro anti-inflammatory potential of Barley grass leaf extracts. RESULTS: Both BGHE and BGAQ demonstrated significant inhibitory effects on inflammation compared to the control group. However, BGHE exhibited superior anti-inflammatory efficacy when compared to BGAQ, suggesting its role as a potential anti-inflammatory agent. In silico studies further supported the anti-inflammatory potential of Barley grass leaf extracts. CONCLUSION: Hordeum vulgare, or Barley grass, offers a wealth of health benefits, including anti-inflammatory, anti-diabetic, anti-cancer, antioxidant, anti-acne, and anti-depressant properties. These properties contribute to improved immunity, reduced cardiovascular disorders, and alleviation of fatigue. The distinct extracts, BGHE and BGAQ, both exhibit promising anti-inflammatory capabilities, but BGHE shows better anti-inflammatory activity. This research sheds light on the therapeutic potential of Barley grass, making it a valuable candidate for further exploration in the field of natural medicine.


Assuntos
Anti-Inflamatórios , Apigenina , Glucosídeos , Hordeum , Extratos Vegetais , Glucosídeos/química , Glucosídeos/farmacologia , Apigenina/química , Apigenina/farmacologia , Hordeum/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Simulação por Computador , Técnicas In Vitro , Humanos , Eritrócitos/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Simulação de Acoplamento Molecular
4.
Molecules ; 27(5)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35268622

RESUMO

The roots of Melastoma malabathricum subsp. normale (D. Don) Karst. Mey have been used in traditional ethnic medicine systems in China to treat inflammation-triggered ailments, such as trauma, toothache, and fever. Therefore, the aim of this study is to screen for compounds with anti-inflammatory activity in the title plant. The extract of M. malabathricum subsp. normale roots was separated using various chromatographic methods, such as silica gel, ODS C18, MCI gel, and Sephadex LH-20 column chromatography, as well as semi-preparative HPLC. One new complex tannin, named whiskey tannin D (1), and an undescribed tetracyclic depsidone derivative, named guanxidone B (2), along with nine known polyphenols (2-10) and three known depsidone derivatives (12-14) were obtained from this plant. The structures of all compounds were elucidated by extensive NMR and CD experiments in conjunction with HR-ESI-MS data. All these compounds were isolated from this plant for the first time. Moreover, compounds 1-4, 8, and 10-14 were obtained for the first time from the genus Melastoma, and compounds 1, 2, and 11-14 have not been reported from the family Melastomataceae. This is the first report of complex tannin and depsidone derivatives from M. malabathricum subsp. normale, indicating their chemotaxonomic significance to this plant. Compounds 1-12 were investigated for their anti-inflammatory activities on the production of the nitric oxide (NO) in lipopolysaccharide (LPS)-stimulated RAW264.7 cells, and compounds 1, 11, and 12 showed anti-inflammatory activities with IC50 values of 6.46 ± 0.23 µM, 8.02 ± 0.35 µM, and 9.82 ± 0.43 µM, respectively. The structure-activity relationship showed that the catechin at glucose C-1 in ellagitannin was the key to its anti-inflammatory activity, while CH3O- at C-16 of aromatic ring A in depsidone derivatives had little effect on its anti-inflammatory activity. The study of structure-activity relationships is helpful to quickly discover new anti-inflammatory drugs. The successful isolation and structure identification of these compounds, especially complex tannin 1, not only provide materials for the screening of anti-inflammatory compounds, but also provide a basis for the study of chemical taxonomy of the genus Melastoma.


Assuntos
Melastomataceae , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Depsídeos , Lactonas , Melastomataceae/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Polifenóis/farmacologia
5.
Molecules ; 27(4)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35209125

RESUMO

The acute inflammation process is explained by numerous hypotheses, including oxidative stress, enzyme stimulation, and the generation of pro-inflammatory cytokines. The anti-inflammatory activity of Yucca gigantea methanol extract (YGME) against carrageenan-induced acute inflammation and possible underlying mechanisms was investigated. The phytochemical profile, cytotoxic, and antimicrobial activities were also explored. LC-MS/MS was utilized to investigate the chemical composition of YGME, and 29 compounds were tentatively identified. In addition, the isolation of luteolin-7-O-ß-d-glucoside, apigenin-7-O-ß-d-glucoside, and kaempferol-3-O-α-l-rhamnoside was performed for the first time from the studied plant. Inflammation was induced by subcutaneous injection of 100 µL of 1% carrageenan sodium. Rats were treated orally with YGME 100, 200 mg/kg, celecoxib (50 mg/kg), and saline, respectively, one hour before carrageenan injection. The average volume of paws edema and weight were measured at several time intervals. Levels of NO, GSH, TNF-α, PGE-2, serum IL-1ß, IL-6 were measured. In additionally, COX-2 immunostaining and histopathological examination of paw tissue were performed. YGME displayed a potent anti-inflammatory influence by reducing paws edema, PGE-2, TNF-α, NO production, serum IL-6, IL-1ß, and COX-2 immunostaining. Furthermore, it replenished the diminished paw GSH contents and improved the histopathological findings. The best cytotoxic effect of YGME was against human melanoma cell line (A365) and osteosarcoma cell line (MG-63). Moreover, the antimicrobial potential of the extract was evaluated against bacterial and fungal isolates. It showed potent activity against Gram-negative, Gram-positive, and fungal Candida albicans isolates. The promoting multiple effects of YGME could be beneficial in the treatment of different ailments based on its anti-inflammatory, antimicrobial, and cytotoxic effects.


Assuntos
Anti-Infecciosos/farmacologia , Anti-Inflamatórios/farmacologia , Extratos Vegetais/farmacologia , Yucca/química , Animais , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Biomarcadores , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida , Modelos Animais de Doenças , Edema/tratamento farmacológico , Edema/etiologia , Edema/patologia , Humanos , Masculino , Testes de Sensibilidade Microbiana , Estrutura Molecular , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Ratos , Análise Espectral , Espectrometria de Massas em Tandem , Yucca/metabolismo
6.
Molecules ; 26(23)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34885782

RESUMO

Currently, the potential utilization of natural plant-derived extracts for medicinal and therapeutic purposes has increased remarkably. The current study, therefore, aimed to assess the antimicrobial and anti-inflammatory activity of modified solvent evaporation-assisted ethanolic extract of Woodfordia fruticosa flowers. For viable use of the extract, qualitative analysis of phytochemicals and their identification was carried out by gas chromatography-mass spectroscopy. Analysis revealed that phenolic (65.62 ± 0.05 mg/g), flavonoid (62.82 ± 0.07 mg/g), and ascorbic acid (52.46 ± 0.1 mg/g) components were present in high amounts, while ß-carotene (62.92 ± 0.02 µg/mg) and lycopene (60.42 ± 0.8 µg/mg) were present in lower amounts. The antimicrobial proficiency of modified solvent-assisted extract was evaluated against four pathogenic bacterial and one fungal strain, namely Staphylococcusaureus (MTCC 3160), Klebsiellapneumoniae (MTCC 3384), Pseudomonasaeruginosa (MTCC 2295), and Salmonellatyphimurium (MTCC 1254), and Candidaalbicans (MTCC 183), respectively. The zone of inhibition was comparable to antibiotics streptomycin and amphotericin were used as a positive control for pathogenic bacterial and fungal strains. The extract showed significantly higher (p < 0.05) anti-inflammatory activity during the albumin denaturation assay (43.56-86.59%) and HRBC membrane stabilization assay (43.62-87.69%). The extract showed significantly (p < 0.05) higher DPPH (2,2-diphenyl-1-picrylhydrazyl) scavenging assay and the obtained results are comparable with BHA (butylated hydroxyanisole) and BHT (butylated hydroxytoluene) with percentage inhibitions of 82.46%, 83.34%, and 84.23%, respectively. Therefore, the obtained results concluded that ethanolic extract of Woodfordia fruticosa flowers could be utilized as a magnificent source of phenols used for the manufacturing of value-added food products.


Assuntos
Anti-Infecciosos/farmacologia , Anti-Inflamatórios/farmacologia , Etanol/química , Flores/química , Cromatografia Gasosa-Espectrometria de Massas , Extratos Vegetais/farmacologia , Woodfordia/química , Animais , Anti-Infecciosos/química , Anti-Inflamatórios/química , Antioxidantes/análise , Antioxidantes/farmacologia , Bactérias/efeitos dos fármacos , Galinhas , Diclofenaco/farmacologia , Fungos/efeitos dos fármacos , Humanos , Cinética , Testes de Sensibilidade Microbiana , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Solventes/química
7.
Molecules ; 26(21)2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34771039

RESUMO

Neolignans honokiol and 4'-O-methylhonokiol (MH) and their derivatives have pronounced anti-inflammatory activity, as evidenced by numerous pharmacological studies. Literature data suggested that cyclooxygenase type 2 (COX-2) may be a target for these compounds in vitro and in vivo. Recent studies of [11C]MPbP (4'-[11C]methoxy-5-propyl-1,1'-biphenyl-2-ol) biodistribution in LPS (lipopolysaccharide)-treated rats have confirmed the high potential of MH derivatives for imaging neuroinflammation. Here, we report the synthesis of four structural analogs of honokiol, of which 4'-(2-fluoroethoxy)-2-hydroxy-5-propyl-1, 1'-biphenyl (F-IV) was selected for labeling with fluorine-18 (T1/2 = 109.8 min) due to its high anti-inflammatory activity confirmed by enzyme immunoassays (EIA) and neuromorphological studies. The high inhibitory potency of F-IV to COX-2 and its moderate lipophilicity and chemical stability are favorable factors for the preliminary evaluation of the radioligand [18F]F-IV in a rodent model of neuroinflammation. [18F]F-IV was prepared with good radiochemical yield and high molar activity and radiochemical purity by 18F-fluoroethylation of the precursor with Boc-protecting group (15) with [18F]2-fluoro-1-bromoethane ([18F]FEB). Ex vivo biodistribution studies revealed a small to moderate increase in radioligand uptake in the brain and peripheral organs of LPS-induced rats compared to control animals. Pretreatment with celecoxib resulted in significant blocking of radioactivity uptake in the brain (pons and medulla), heart, lungs, and kidneys, indicating that [18F]F-IV is likely to specifically bind to COX-2 in a rat model of neuroinflammation. However, in comparison with [11C]MPbP, the new radioligand showed decreased brain uptake in LPS rats and high retention in the blood pool, which apparently could be explained by its high plasma protein binding. We believe that the structure of [18F]F-IV can be optimized by replacing the substituents in the biphenyl core to eliminate these disadvantages and develop new radioligands for imaging activated microglia.


Assuntos
Anti-Inflamatórios/química , Compostos de Bifenilo/química , Hidrocarbonetos Fluorados/química , Inflamação/diagnóstico por imagem , Lignanas/química , Compostos Radiofarmacêuticos/química , Animais , Anti-Inflamatórios/síntese química , Compostos de Bifenilo/síntese química , Radioisótopos de Flúor , Lignanas/síntese química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Compostos Radiofarmacêuticos/síntese química
8.
Molecules ; 26(19)2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34641628

RESUMO

This work aims to assess the recently established anti-inflammatory and antioxidant potential of melatonin of plant origin extracted from the plant matrix as a phytomelatonin complex (PHT-MLT), and compare its activity with synthetic melatonin (SNT-MLT) when used on its own or with vitamin C. For this purpose, a COX-2 enzyme inhibitory activity test, an antiradical activity in vitro and on cell lines assays, was performed on both PHT-MLT and SNT-MLT products. COX-2 inhibitory activity of PHT-MLT was found to be ca. 6.5 times stronger than that of SNT-MLT (43.3% and 6.7% enzyme inhibition, equivalent to the activity of acetylsalicylic acid in conc. 30.3 ± 0.2 and 12.0 ± 0.3 mg/mL, respectively). Higher antiradical potential and COX-2 inhibitory properties of PHT-MLT could be explained by the presence of additional naturally occurring constituents in alfalfa, chlorella, and rice, which were clearly visible on the HPLC-ESI-QTOF-MS fingerprint. The antiradical properties of PHT-MLT determined in the DPPH test (IC50 of 21.6 ± 1 mg of powder/mL) were found to originate from the presence of other metabolites in the 50% EtOH extract while SNT-MLT was found to be inactive under the applied testing conditions. However, the antioxidant studies on HaCaT keratinocytes stimulated with H2O2 revealed a noticeable activity in all samples. The presence of PHT-MLT (12.5, 25 and 50 µg/mL) and vitamin C (12.5, 25 and 50 µg/mL) in the H2O2-pretreated HaCaT keratinocytes protected the cells from generating reactive oxygen species. This observation confirms that MLT-containing samples affect the intracellular production of enzymes and neutralize the free radicals. Presented results indicated that MLT-containing products in combination with Vitamin C dosage are worth to be considered as a preventive alternative in the therapy of various diseases in the etiopathogenesis, of which radical and inflammatory mechanisms play an important role.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Ciclo-Oxigenase 2/metabolismo , Queratinócitos/citologia , Melatonina/farmacologia , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Antioxidantes/síntese química , Antioxidantes/química , Ácido Ascórbico/farmacologia , Linhagem Celular , Regulação para Baixo , Sinergismo Farmacológico , Radicais Livres/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/efeitos adversos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Melatonina/síntese química , Melatonina/química , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia
9.
Food Funct ; 12(19): 9197-9210, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34606534

RESUMO

Cinnamomum camphora seeds have multiple bioactivities. There were few studies on the effect of C. camphora seeds on intestinal inflammation in vitro and in vivo. The study aimed to investigate the effects of ethanol extracts from C. camphora seed kernel on intestinal inflammation using simulated gastrointestinal digestion and a Caco-2/RAW264.7 co-culture system. Results showed that the digested ethanol extracts (dEE) were rich in polyphenols, and a total of 17 compounds were tentatively identified using UPLC-LTQ-Orbitrap-MS/MS. dEE increased cell viability, while decreasing the production of reactive oxygen species, and the secretion and gene expression of inflammatory markers (NO, PGE2, TNF-α, IL-1ß and IL-6). dEE also down-regulated NF-κB/MAPK pathway activities by suppressing the phosphorylation of relevant signaling molecules (p65, IκBα, ERK and p38), as well as the expression of TLR4 receptor protein. Furthermore, dEE may improve intestinal barrier function by increasing the TEER value, and the expression of tight junction proteins (ZO-1, claudin-1 and occludin). The results suggest the ethanol extracts from C. camphora seed kernel may have strong anti-inflammatory activities, and a potential application in the prevention or treatment of intestinal inflammation and enhancement of intestinal barrier function in organisms.


Assuntos
Anti-Inflamatórios/farmacologia , Cinnamomum camphora , Inflamação/tratamento farmacológico , Intestinos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Sementes , Animais , Anti-Inflamatórios/química , Células CACO-2 , Sobrevivência Celular , Técnicas de Cocultura , Citocinas/genética , Citocinas/metabolismo , Digestão , Etanol , Humanos , Inflamação/prevenção & controle , Mucosa Intestinal/fisiologia , Intestinos/metabolismo , Intestinos/fisiologia , Camundongos , Óxido Nítrico/metabolismo , Fitoterapia , Extratos Vegetais/química , Polifenóis/análise , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo
10.
Biomed Res Int ; 2021: 5536030, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34395619

RESUMO

Argania spinosa (L.) plays an important role in the Moroccan agroeconomy, providing both employment and export revenue. Argan oil production generates different by-products with functionalities that are not yet investigated, in particular, the shell fruit. The present study aims, for the first time, at evaluating the acute and subacute toxicity, anti-inflammatory, and antioxidant effects of argan fruit shell ethanol extract (AFSEE). The LD50 of AFSEE was determined to be greater than the 5000 mg/kg body weight of mice. No significant variation in the body and organ weights was observed after 28 days of AFSEE treatment compared to that of the control group. Biochemical parameters and histopathological examination revealed no toxic effects of AFSEE. The AFSEE produced a significant inhibition of xylene-induced ear edema in mice. AFSEE reduced significantly the paw edema in mice after carrageenan injection. The chemical characterization showed that AFSEE contains a high level of total phenol content, flavonoids, condensed tannins, and flavanols. The obtained IC50 of DPPH, ABTS, reducing power, and ß-carotene demonstrates that AFSEE has a potential antioxidant effect. The results indicate that AFSEE was safe and nontoxic to mice even at higher doses. Furthermore, the present findings demonstrate that AFSEE has potential anti-inflammatory and antioxidant activities.


Assuntos
Álcoois/administração & dosagem , Anti-Inflamatórios/administração & dosagem , Antioxidantes/administração & dosagem , Edema/tratamento farmacológico , Sapotaceae/química , Xilenos/toxicidade , Álcoois/química , Álcoois/farmacologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Edema/induzido quimicamente , Dose Letal Mediana , Masculino , Camundongos , Marrocos , Extratos Vegetais/química
11.
Chem Biol Drug Des ; 98(1): 114-126, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33961336

RESUMO

3-O-trans-caffeoyloleanolic acid (COA) is a pentacyclic triterpenoid compound, with significant anti-inflammatory effects. In this study, we report the protective effects of COA on lipopolysaccharide (LPS)-induced acute lung injury (ALI) and explored its mechanism of action. LPS was used to construct in vivo mouse ALI models to observe the effects of COA pretreatment on lung pathology, inflammation, and oxidative stress. In vitro, mouse alveolar macrophages MH-S cells were cultured and stimulated with LPS to investigate the effects of COA pretreatment on inflammation and oxidative stress. Western blotting was used to investigate the expression of iNOS, TLR4, p-p65, p-AKT, and p-PI3K from in vivo and in vitro samples. The results showed that COA significantly improved lung injury, inhibited neutrophil infiltration, prevented macrophage infiltration, inhibited the release of inflammatory factors, reduced oxidative stress, and down-regulated the expression of iNOS, TLR4, p-p65, p-AKT, and p-PI3K in ALI mice caused by LPS. In vitro, COA inhibited the release of inflammatory factors, reduced oxidative stress, and down-regulated the expression of iNOS, TLR4, p-p65, p-AKT, and p-PI3K in MH-S cells stimulated with LPS. Of interest, the protective effects of COA were significantly attenuated in MH-S cells pretreated with the PI3K phosphopeptide activator 740Y-P with no effect on TLR4 expression observed. Taken together, these findings confirm the protective effects of COA on ALI. We further demonstrate that the anti-inflammation and antioxidant effects of COA are mediated through its effects on PI3K/AKT and potentially TLR4.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Anti-Inflamatórios/química , Ácido Oleanólico/análogos & derivados , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Lipopolissacarídeos/metabolismo , Macrófagos/citologia , Masculino , Camundongos Endogâmicos BALB C , Óxido Nítrico Sintase Tipo II/metabolismo , Ácido Oleanólico/química , Ácido Oleanólico/farmacologia , Fosfopeptídeos/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo
12.
Bioorg Chem ; 111: 104883, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33865053

RESUMO

A novel series of thiazolo-pyrazole hybrids has been prepared and assessed for their in vitro COX-1/COX-2 inhibitory activity. Compound 6c exhibited the most selective COX-2 inhibition profile (SI of 264) not far of Celecoxib (294). In-vivo anti-inflammatory activity revealed that compound 6d exhibited the highest activity (97.30% inhibition of edema) exceeding reference standard Indomethacin (84.62% inhibition of edema). The ulcerogenic liability tested, using gross, microscopic, biochemical analysis and apoptotic genes expression, showed that compound 6b matched the optimal candidate activity (ulcer index = 120, selectivity index of ~ 162 and 77% in-vivo inhibition of edema). Meanwhile, compound 6 m (ulcer index = 0) showcased the highest safety profile. Molecular modeling analysis and drug likeness studies presented appreciated agreement with the biological evaluation.


Assuntos
Anti-Inflamatórios/farmacologia , Antiulcerosos/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Edema/tratamento farmacológico , Úlcera Gástrica/tratamento farmacológico , Animais , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Antiulcerosos/síntese química , Antiulcerosos/química , Apoptose/efeitos dos fármacos , Apoptose/genética , Inibidores de Ciclo-Oxigenase 2/síntese química , Inibidores de Ciclo-Oxigenase 2/química , Relação Dose-Resposta a Droga , Desenho de Fármacos , Edema/induzido quimicamente , Edema/patologia , Formaldeído , Masculino , Modelos Moleculares , Estrutura Molecular , Pirazóis/química , Pirazóis/farmacologia , Ratos , Ratos Wistar , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/patologia , Relação Estrutura-Atividade , Tiazóis/química , Tiazóis/farmacologia
13.
Z Naturforsch C J Biosci ; 76(7-8): 317-327, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-33559461

RESUMO

Phytochemical profiles of essential oil (EO), fatty acids, and n-hexane (CAH), diethyl ether (CAD), ethyl acetate (CAE) and methanol extracts (CAM) of Cota altissima L. J. Gay (syn. Anthemis altissima L.) were investigated as well as their antioxidant, anti-inflammatory, antidiabetic and antimicrobial activites. The essential oil was characterized by the content of acetophenone (35.8%) and ß-caryophyllene (10.3%) by GC-MS/FID. Linoleic and oleic acid were found as main fatty acids. The major constituents of the extracts were found to be 5-caffeoylquinic acid, 3,5-dicaffeoylquinic acid, isorhamnetin glucoside, quercetin and quercetin glucoside by LC-MS/MS. Antioxidant activities of the extracts were determined by scavenging of DPPH and ABTS free radicals. Also, the inhibitory effects on lipoxygenase and α-glucosidase enzymes were determined. Antimicrobial activity was evaluated against Gram positive, Gram negative bacteria and yeast pathogens. CAM showed the highest antioxidant activity against DPPH and ABTS radicals with IC50 values of 126.60 and 144.40 µg/mL, respectively. In the anti-inflammatory activity, CAE demonstrated the highest antilipoxygenase activity with an IC50 value of 105.40 µg/mL, whereas, CAD showed the best inhibition of α-glucosidase with an IC50 value of 396.40 µg/mL in the antidiabetic activity. CAH was effective against Staphylococcus aureus at MIC = 312.5 µg/mL. This is the first report on antidiabetic, anti-inflammatory and antimicrobial activities of different extracts of C. altissima.


Assuntos
Anti-Infecciosos/farmacologia , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Asteraceae/química , Hipoglicemiantes/farmacologia , Compostos Fitoquímicos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Antioxidantes/química , Antioxidantes/isolamento & purificação , Bactérias/classificação , Bactérias/efeitos dos fármacos , Compostos de Bifenilo/metabolismo , Candida/efeitos dos fármacos , Cromatografia Líquida/métodos , Flavonoides/química , Flavonoides/isolamento & purificação , Flavonoides/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/isolamento & purificação , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Óleos Voláteis/farmacologia , Oxirredução/efeitos dos fármacos , Fenol/química , Fenol/isolamento & purificação , Fenol/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Picratos/metabolismo , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Espectrometria de Massas em Tandem/métodos
14.
J Ethnopharmacol ; 269: 113739, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33359854

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The Cleomaceae family is known for its richness in secondary metabolites and different Cleome species are used in folk medicine. Cleome amblyocarpa and Cleome arabica are medicinal herbs used in Tunisia and other North Africa countries to treat various diseases such as diabetes, rheumatism, colic, pain and digestive disorders. AIM OF THE STUDY: To our knowledge, few data are available about the nutritional value, phytochemical components and biological effects of C. arabica and C. amblyocarpa cultivated in Tunisia. For this reason, the present survey aimed to determine the nutritional value, bioactive compounds and pharmacological properties of the leaves of these two species of Cleome. MATERIALS AND METHODS: To characterize and determine the bioactive compounds in both extracts of leaves of Cleome species, ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) was used. The various nutritional parameters were analyzed, in particular the amounts of protein, carbohydrates, ash, fiber, and total lipids. Vitamin E and fatty acid profiles were also evaluated by HPLC-DAD-FLD and GC-FID, respectively. The acute toxic effects of leaf extracts in mice at concentrations of 100, 500 and 800 mg/kg body weight have been investigated. The anti-inflammatory effect of leaves extracts was examined by means of the in vitro and in vivo models. The in vivo anti-inflammatory test was assessed by means of the carrageenan induced paw edema in rats. For the in vitro anti-inflammatory assay, the red blood cells membrane stabilization and protein denaturation methods were employed. The analgesic effect of hydroalcoholic extracts of leaves was also assessed by acetic acid induced writhing model in mice. RESULTS: The phytochemical composition and the nutritional values of the leaves of C. amblyocarpa and C. arabica were determined. Our results revealed that the leaves of C. amblyocarpa are rich in flavonoids and glucosinolates. On the other hand, these latter metabolites are not present in the C. arabica extract and the leaves are characterized by the presence of flavones, methoxyflavones and their glycosides. Our findings revealed that the leaves of the two species contain a potential quantity of vitamins; proteins, carbohydrates and dietary fiber, and their hydroalcoholic extracts indicated substantial anti-inflammatory and antinociceptive activities in all the tests. Additionally, the data from the acute toxicity test proved that the leaf extracts did not cause any mortality or signs of toxicity in animals at doses up to 800 mg/kg CONCLUSIONS: The results obtained in this investigation demonstrated that the leaves of C. arabica and C. amblyocarpa are a valuable source of nutrients and active substances. Our observations support the traditional utilize of these two Cleome species for the treatment of painful diseases and as a source of natural anti-inflammatory agents.


Assuntos
Analgésicos/farmacologia , Anti-Inflamatórios/farmacologia , Cleome/química , Hiperalgesia/tratamento farmacológico , Inflamação/tratamento farmacológico , Extratos Vegetais/farmacologia , Ácido Acético/toxicidade , África do Norte , Analgésicos/química , Analgésicos/uso terapêutico , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Comportamento Animal/efeitos dos fármacos , Carragenina/toxicidade , Cromatografia Líquida , Edema/induzido quimicamente , Edema/tratamento farmacológico , Membrana Eritrocítica/efeitos dos fármacos , Ácidos Graxos/análise , Feminino , Hiperalgesia/induzido quimicamente , Inflamação/induzido quimicamente , Masculino , Camundongos , Valor Nutritivo , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Folhas de Planta/química , Plantas Medicinais/química , Desnaturação Proteica/efeitos dos fármacos , Ratos Wistar , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Vitamina E/análise
15.
Med Chem ; 17(9): 983-993, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32885758

RESUMO

BACKGROUND: Inflammation involves a dynamic network that is highly regulated by signals that initiate the inflammation process as well as signals that downregulate it. However, an imbalance between the two leads to tissue damage. Throughout the world, inflammatory disease becomes common in the aging society. The drugs which are used clinically have serious side effects. Natural products or compounds derived from natural products show diversity in structure and play an important role in drug discovery and development. OBJECTIVE: Oreganum Vulgare is used in traditional medicine for various ailments including respiratory and rheumatic disorders, severe cold, suppression of tumors. The current study aims to evaluate the anti-inflammatory potential by evaluating various in vitro parameters. METHODS: Inflammation-induced in macrophages via LPS is the most accepted model for evaluating the antiinflammatory activity of various plant extracts and lead compounds. RESULTS: The extracts (OVEE, OVEAF) as well as the isolated compound(OVRA)of Oreganum Vulgare inhibit the pro-inflammatory cytokines (IL-6 and TNF-α) and NO without affecting cell viability. CONCLUSION: Our study established that the leaf extracts of Oreganum vulgare L. exhibit anti-inflammatory activity and thus confirm its importance in traditional medicine.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Origanum/química , Animais , Anti-Inflamatórios/química , Antioxidantes/química , Sobrevivência Celular/efeitos dos fármacos , Cinamatos/química , Cinamatos/metabolismo , Citocinas/metabolismo , Depsídeos/química , Depsídeos/metabolismo , Dexametasona/química , Dexametasona/metabolismo , Avaliação Pré-Clínica de Medicamentos , Interleucina-1beta/química , Interleucina-1beta/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Simulação de Acoplamento Molecular , Óxido Nítrico/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Células RAW 264.7 , Fator de Necrose Tumoral alfa/química , Fator de Necrose Tumoral alfa/metabolismo , Ácido Rosmarínico
16.
Molecules ; 25(22)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187049

RESUMO

Flavonoids are phytochemical compounds present in many plants, fruits, vegetables, and leaves, with potential applications in medicinal chemistry. Flavonoids possess a number of medicinal benefits, including anticancer, antioxidant, anti-inflammatory, and antiviral properties. They also have neuroprotective and cardio-protective effects. These biological activities depend upon the type of flavonoid, its (possible) mode of action, and its bioavailability. These cost-effective medicinal components have significant biological activities, and their effectiveness has been proved for a variety of diseases. The most recent work is focused on their isolation, synthesis of their analogs, and their effects on human health using a variety of techniques and animal models. Thousands of flavonoids have been successfully isolated, and this number increases steadily. We have therefore made an effort to summarize the isolated flavonoids with useful activities in order to gain a better understanding of their effects on human health.


Assuntos
Flavonoides/química , Flavonoides/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/prevenção & controle , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Antimaláricos/química , Antimaláricos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Antivirais/química , Antivirais/farmacologia , Sistema Cardiovascular/efeitos dos fármacos , Flavonoides/economia , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Camundongos , Sistema Nervoso/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Folhas de Planta/química , Plantas/química , Polifenóis/química , Polifenóis/farmacologia , Quercetina/química , Quercetina/farmacologia , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/prevenção & controle
17.
Drug Dev Ind Pharm ; 46(9): 1524-1534, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32808552

RESUMO

This research planned to ameliorate an aqueous solubility and dissolution of Curcumin (CUR) by the formulation of inclusion complex with ß-cyclodextrin (ß-CD) and polyvinylpyrrolidone (PVP). The phase solubility study was performed to assess the solubility of CUR. The prepared CUR complex assessed for dissolution study, physicochemical evaluation, in-vitro antioxidant activity, molecular modeling, and anti-inflammatory assessment. The pivotal findings of phase-solubility studies demonstrate apparent stability constant (Kc) and complexation efficiency (CE) values for CUR-ß-CD and CUR-ß-CD-PVP complex was 175.4 M -1, 1.15% and 833.3.2 M -1 and 5.21%, respectively. The characterization results revealed amorphization of crystalline state (CUR) into amorphous state. The maximum drug release found with the ternary CUR complex (F7), i.e. 45.41 ± 3.78% in 6 h study. The chemical shift in the NMR supports that the aromatic ring of CUR is completely complexed inside the ß-CD cavity. The antioxidant activity of pure CUR was found to be 58.02 ± 2.21% and CUR ternary complex (F7) showed significantly higher activity to 96.02 ± 2.46%. The in-vivo effect of CUR complex (F7) was also found significantly higher than that of pure CUR. The molecular modeling study depicted that PVP increased the stability of the ternary complex by forming the link between CUR and ß-CD. Thus, the ternary inclusion complex of CUR-ß-CD-PVP could contribute as an innovative outcome in the enhancement of solubility and in-vivo activity.


Assuntos
Anti-Inflamatórios/farmacologia , Curcumina , Povidona/química , beta-Ciclodextrinas , Anti-Inflamatórios/química , Simulação de Acoplamento Molecular , Solubilidade
18.
AAPS J ; 22(3): 69, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32385732

RESUMO

Quality by design (QbD) is an efficient but challenging approach for the development of biosimilar due to the complex relationship among process, quality, and efficacy. Here, the analytical similarity of adalimumab biosimilar HLX03 to Humira® was successfully established following a QbD quality study. Quality target product profile (QTPP) of HLX03 was first generated according to the public available information and initial characterization of 3 batches of Humira®. The critical quality attributes (CQAs) were then identified through risk assessment according to impact of each quality attribute on efficacy and safety. The anticipated range for each CQA was derived from similarity acceptance range and/or the corresponding regulatory guidelines. Finally, a panel of advanced and orthogonal physicochemical and functional tests and comparison of 6 batches of HLX03 and 10 batches of the reference standard demonstrated high similarity of HLX03 to Humira®, except for slightly lower percentage of high mannosylated glycans (%HM) in HLX03 which had no effect on FcγRIII binding and antibody-dependent cell-mediated cytotoxicity (ADCC) activity in human peripheral blood mononuclear cell (PBMC). All above demonstrated the feasibility and efficiency of QbD-based similarity assessment of a biosimilar monoclonal antibody (mAb).


Assuntos
Adalimumab/análise , Anti-Inflamatórios/análise , Medicamentos Biossimilares/análise , Pesquisa Qualitativa , Adalimumab/química , Animais , Anti-Inflamatórios/química , Medicamentos Biossimilares/química , Células CHO , Cricetinae , Cricetulus , Humanos , Células Jurkat , Células U937
19.
Biomolecules ; 10(5)2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32455586

RESUMO

Several food-derived molecules, including proteins and peptides, can show bioactivities toward the promotion of well-being and disease prevention in humans. There is still a lack of information about the potential effects on immune and inflammatory responses in mammalian cells following the ingestion of seed storage proteins. This study, for the first time, describes the potential immunomodulation capacity of chenopodin, the major protein component of quinoa seeds. After characterizing the molecular features of the purified protein, we were able to separate two different forms of chenopodin, indicated as LcC (Low charge Chenopodin, 30% of total chenopodin) and HcC (High charge Chenopodin, 70% of total chenopodin). The biological effects of LcC and HcC were investigated by measuring NF-κB activation and IL-8 expression studies in undifferentiated Caco-2 cells. Inflammation was elicited using IL-1ß. The results indicate that LcC and HcC show potential anti-inflammatory activities in an intestinal cell model, and that the proteins can act differently, depending on their structural features. Furthermore, the molecular mechanisms of action and the structural/functional relationships of the protein at the basis of the observed bioactivity were investigated using in silico analyses and structural predictions.


Assuntos
Anti-Inflamatórios/farmacologia , Interleucina-1beta/metabolismo , Proteínas de Plantas/farmacologia , Anti-Inflamatórios/química , Sítios de Ligação , Células CACO-2 , Humanos , Interleucina-1beta/química , Interleucina-8/metabolismo , NF-kappa B/metabolismo , Proteínas de Plantas/química , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/farmacologia , Transdução de Sinais/efeitos dos fármacos
20.
Fish Shellfish Immunol ; 101: 234-243, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32240748

RESUMO

Establishing new animal models for the study of inflammation is very important in the process of discovering new drugs, since the inflammatory event is the basis of many pathological processes. Whereas rodent models have been the primary focus of inflammation research, we defend the zebrafish (Danio rerio) test as a feasible alternative for preclinical studies. Moreover, despite all the technological development already achieved by humanity, nature can still be considered a relevant source of new medicines. In this context, the aim of this work was to evaluate the anti-inflammatory effect of a substance isolated from the medicinal plant Annona crassilfora Mart, the peltatoside, in an inflammatory model of zebrafish. It was determined: (i) total leukocyte count in the coelomate exudate; (ii) N-acetyl-ß-d-glucuronidase (NAG); (iii) myeloperoxidase (MPO); (iv) and the histology of liver, intestine and mesentery. Peltotoside (25, 50 and 100 µg) and dexamethasone (25 µg) were administered intracelomatically (i.c.) 30 min before carrageenan (i.c.). Pretreatment with peltatoside at three doses significantly inhibited leukocyte recruitment in the coelomic cavity, and inhibited NAG and MPO activity against the action of Cg, in a similar manner as dexamethasone. However, some microlesions in the evaluated organs were detected. The dose of 25 µg showed an anti-inflammatory effect with lower undesirable effects in the tissues. Our results suggest that the zebrafish test was satisfactory in performing our analyzes and that the peltotoside has a modulatory action in reducing leukocyte migration.


Assuntos
Annona/química , Anti-Inflamatórios/farmacologia , Modelos Animais de Doenças , Glicosídeos/farmacologia , Inflamação/tratamento farmacológico , Extratos Vegetais/farmacologia , Quercetina/análogos & derivados , Peixe-Zebra , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/química , Glicosídeos/administração & dosagem , Glicosídeos/química , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Folhas de Planta/química , Plantas Medicinais/química , Quercetina/administração & dosagem , Quercetina/química , Quercetina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA