Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Waste Manag Res ; 41(3): 497-498, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36727668

Assuntos
Antibiose , Simbiose
2.
J Econ Entomol ; 115(2): 671-681, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35137138

RESUMO

Plant resistance is a key strategy for the management of Oryzophagus oryzae (Costa Lima) (Coleoptera: Curculionidae), an important pest in South American rice paddies. The present study investigated the resistance of rice cultivars in terms of feeding and oviposition preference, growth, development, and biological performance of O. oryzae under natural conditions of field infestation during two consecutive rice seasons. There were no effects of the six cultivars on the feeding and oviposition preferences of O. oryzae as evaluated 5, 8, and 11 d After Flooding (DAF) of the plots, indicating the absence of antixenosis. Cultivars did not differ in terms of egg viability and larval density of first instars on the roots at 15 DAF. Significant differences were found 25 and 35 DAF when larval density per sample was high on 'BRS Pampa CL' (up to 24.5), intermediate on 'BRS Querência' and 'BRS Ligeirinho' (up to 16.1), and low on 'BRS Atalanta', 'BRS Firmeza', and 'Dawn' (up to 8.8). The cultivars 'BRS Atalanta', 'BRS Firmeza', and 'Dawn' caused malnutrition and inhibition of larval growth. These effects, typical of antibiosis, resulted in delayed pupation and emergence of adults; in addition, emerged females had body weight decreased strongly. The cultivars BRS Pampa CL, BRS Querência, and BRS Ligeirinho are susceptible, resulting in high larval populations and more suitable development of O. oryzae; antibiosis, as indicated for 'BRS Atalanta', 'BRS Firmeza', and 'Dawn', probably is the key mechanism of rice resistance to O. oryzae.


Assuntos
Besouros , Lepidópteros , Oryza , Gorgulhos , Animais , Antibiose , Feminino , Larva , Oryza/fisiologia , Oviposição
3.
Nucleic Acids Res ; 49(19): 10868-10878, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34606606

RESUMO

To provide protection against viral infection and limit the uptake of mobile genetic elements, bacteria and archaea have evolved many diverse defence systems. The discovery and application of CRISPR-Cas adaptive immune systems has spurred recent interest in the identification and classification of new types of defence systems. Many new defence systems have recently been reported but there is a lack of accessible tools available to identify homologs of these systems in different genomes. Here, we report the Prokaryotic Antiviral Defence LOCator (PADLOC), a flexible and scalable open-source tool for defence system identification. With PADLOC, defence system genes are identified using HMM-based homologue searches, followed by validation of system completeness using gene presence/absence and synteny criteria specified by customisable system classifications. We show that PADLOC identifies defence systems with high accuracy and sensitivity. Our modular approach to organising the HMMs and system classifications allows additional defence systems to be easily integrated into the PADLOC database. To demonstrate application of PADLOC to biological questions, we used PADLOC to identify six new subtypes of known defence systems and a putative novel defence system comprised of a helicase, methylase and ATPase. PADLOC is available as a standalone package (https://github.com/padlocbio/padloc) and as a webserver (https://padloc.otago.ac.nz).


Assuntos
Antibiose/genética , Archaea/genética , Proteínas Arqueais/genética , Bactérias/genética , Proteínas de Bactérias/genética , Bacteriófagos/genética , Software , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Archaea/classificação , Archaea/metabolismo , Archaea/virologia , Proteínas Arqueais/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Bactérias/virologia , Proteínas de Bactérias/metabolismo , Bacteriófagos/crescimento & desenvolvimento , Sistemas CRISPR-Cas , DNA Helicases/genética , DNA Helicases/metabolismo , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Cadeias de Markov , Filogenia , Terminologia como Assunto
4.
Lett Appl Microbiol ; 73(2): 229-236, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33948964

RESUMO

Biological control of plant diseases with antagonistic bacteria is a promising alternative to conventional chemical control strategies. In vitro screening for inhibition of mycelial growth of phytopathogenic fungi by bacterial isolates is the first step in selecting putative bacterial biocontrol agents. Dual culture plate assay is the most common method involved in this first-line selection process. However, it needs independent agar plates to test antagonism by a specific bacterial isolate against each of the fungal phytopathogen. Two modified in vitro antagonism tests are proposed here. Antagonistic activity of a putative biocontrol bacterial strain against four different fungal phytopathogens could be assessed in a single agar plate simultaneously. A comparison of the new methods with conventional dual culture plate assay was also done. The proposed methods are easy to perform and results of antagonism are obtained rapidly. Results of fungal inhibition were qualitatively comparable with that generated through dual culture plate assay. Quantity of resources such as agar medium and plates required for the modified antagonistic assays is several folds less than that required for dual culture plate assay.


Assuntos
Antibiose , Bactérias/metabolismo , Agentes de Controle Biológico , Fungos/crescimento & desenvolvimento , Técnicas Microbiológicas/métodos , Doenças das Plantas/microbiologia , Bactérias/isolamento & purificação , Meios de Cultura , Interações Microbianas , Doenças das Plantas/prevenção & controle
5.
J Econ Entomol ; 114(3): 1329-1335, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33760061

RESUMO

Host-plant resistance (HPR) remains a vital tool to manage soybean aphid (Aphis glycines Matsumura), a major pest of soybean in Midwestern United States and southern Canada. HPR can be overcome by virulent biotypes of A. glycines; thus, in order to increase the durability of resistant cultivars, HPR needs to be deployed strategically. To improve the strategic deployment, a complete understanding of HPR in existing resistant germplasm will help ensure HPR success. In this study, we characterized HPR soybean to determine antibiosis and antixenosis categories of resistance to different biotypes of A. glycines. No-choice and free-choice tests were performed on 11 previously reported plant introductions (PIs) possessing resistance to at least one A. glycines biotype (1, 2, and 3). Overall, we found that the PIs manifested differences of a particular resistance category in response to infestation by different biotypes. Our data from no-choice tests indicate that all tested PIs possess antibiosis-based resistance to three biotypes. However, the strength of antibiosis was variable as some PIs showed stronger antibiosis toward a given biotype than others. All tested PIs manifested antixenosis, in addition to antibiosis. Furthermore, detached leaf assays revealed that resistance to A. glycines was not retained in excised soybean leaves. Characterization of resistance in this study can contribute to develop strategies for future deployment of resistant cultivars developed from these PIs.


Assuntos
Afídeos , Animais , Antibiose , Canadá , Meio-Oeste dos Estados Unidos , Glycine max/genética
6.
Int J Food Microbiol ; 344: 109111, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33676331

RESUMO

Currants are prone to contamination by ochratoxin during cultivation, processing and storage conditions. Saccharomyces cerevisiae is considered to be among the main species of grape yeast flora able to control antagonistic fungi. In this study, the potential of S. cerevisiae Y33 was investigated to inhibit the growth of several fungal species indigenous to the microbiota of grapes. Moreover, the efficacy of this yeast species was investigated to inhibit OTA by toxin producing fungi both in vitro and in situ. For this purpose thirty-five different fungal species, belonging to the genera Aspergillus, Penicillium, Cladosporium, Fusarium and Alternaria interacted in vitro with S. cerevisiae on Malt Extract agar plates, stored at 25 °C for 14 days. Results showed that the highest OTA producer A. carbonarius F71 was inhibited more than 99% from day 7, in contrast to A. niger strains that presented enhanced OTA production at day 14 due to interaction with S. cerevisiae Y33. Additionally, the antifungal potential of the selected yeast was also studied in situ on currants subjected to different treatments and stored at 25 °C for 28 days. Microbiological analysis was undertaken for the enumeration of the bacterial and fungal flora, together with OTA determination at 7 and 21 days. To quantify A. carbonarius on all treated currant samples, molecular analysis with Real Time PCR was employed. A standard curve was prepared with A. carbonarius DNA. The efficiency of the curve was estimated to 10.416, the slope to -3.312 and the range of haploid genome that could be estimated was from 1.05 to 105∙105. The amount of A. carbonarius DNA in all treated currants samples, where the fungus was positively detected, ranged from as low as 0.08 to 562 ng DNA/g currants. The antifungal activity of S. cerevisiae Y33 was observed in all studied cases, causing inhibition of fungal growth and OTA production.


Assuntos
Antibiose/fisiologia , Ocratoxinas/biossíntese , Ribes/microbiologia , Saccharomyces cerevisiae/patogenicidade , Alternaria/crescimento & desenvolvimento , Alternaria/metabolismo , Antifúngicos/metabolismo , Aspergillus/crescimento & desenvolvimento , Aspergillus/metabolismo , Cladosporium/crescimento & desenvolvimento , Cladosporium/metabolismo , Frutas/microbiologia , Fusarium/crescimento & desenvolvimento , Fusarium/metabolismo , Penicillium/crescimento & desenvolvimento , Penicillium/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Saccharomyces cerevisiae/genética , Fermento Seco
7.
ACS Infect Dis ; 6(5): 1000-1007, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32239920

RESUMO

Clostridioides difficile (C. difficile) infection (CDI) is the primary cause of nosocomial antibiotic-associated diarrhea, with high recurrence rates following initial antibiotic treatment regimens. Restoration of the host gut microbiome through probiotic therapy is under investigation to reduce recurrence. Current in vitro methods to assess C. difficile deactivation by probiotic microorganisms are based on C. difficile growth inhibition, but the cumbersome and time-consuming nature of the assay limits the number of assessed permutations. Phenotypic alterations to the C. difficile cellular structure upon interaction with probiotics can potentially enable rapid assessment of the inhibition without the need for extended culture. Because supernatants from cultures of commensal microbiota reflect the complex metabolite milieu that deactivates C. difficile, we explore coculture of C. difficile with an optimal dose of supernatants from probiotic culture to speed growth inhibition assays and enable correlation with alterations to its prolate ellipsoidal structure. Based on sensitivity of electrical polarizability to C. difficile cell shape and subcellular structure, we show that the inhibitory effect of Lactobacillus spp. supernatants on C. difficile can be determined based on the positive dielectrophoresis level within just 1 h of culture using a highly toxigenic strain and a clinical isolate, whereas optical and growth inhibition measurements require far greater culture time. We envision application of this in vitro coculture model, in conjunction with dielectrophoresis, to rapidly screen for potential probiotic combinations for the treatment of recurrent CDI.


Assuntos
Antibiose , Clostridioides difficile/citologia , Probióticos , Técnicas de Cocultura , Eletroforese , Lactobacillus
8.
Microbes Infect ; 22(1): 8-18, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31233819

RESUMO

The article is mainly devoted to such representatives of gut microbiota as lactic acid bacteria and bifidobacteria, with minor accent on less frequently used or new probiotic microorganisms. Positive effects in treatment and prevention of diseases by different microbial groups, their metabolites and mechanisms of action, management and market of probiotic products are considered.


Assuntos
Microbiota , Probióticos/administração & dosagem , Probióticos/farmacologia , Doença de Alzheimer/terapia , Antibiose , Bifidobacterium/fisiologia , Suplementos Nutricionais/economia , Homeostase , Humanos , Imunomodulação , Lactobacillales/fisiologia , Doenças Metabólicas/terapia , Probióticos/economia , Probióticos/uso terapêutico , Segurança
9.
ISME J ; 14(2): 569-583, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31700119

RESUMO

Soil-inhabiting streptomycetes are nature's medicine makers, producing over half of all known antibiotics and many other bioactive natural products. However, these bacteria also produce many volatiles, molecules that disperse through the soil matrix and may impact other (micro)organisms from a distance. Here, we show that soil- and surface-grown streptomycetes have the ability to kill bacteria over long distances via air-borne antibiosis. Our research shows that streptomycetes do so by producing surprisingly high amounts of the low-cost volatile ammonia, dispersing over long distances to inhibit the growth of Gram-positive and Gram-negative bacteria. Glycine is required as precursor to produce ammonia, and inactivation of the glycine cleavage system nullified ammonia biosynthesis and concomitantly air-borne antibiosis. Reduced expression of the porin master regulator OmpR and its cognate kinase EnvZ is used as a resistance strategy by E. coli cells to survive ammonia-mediated antibiosis. Finally, ammonia was shown to enhance the activity of canonical antibiotics, suggesting that streptomycetes adopt a low-cost strategy to sensitize competitors for antibiosis from a distance.


Assuntos
Amônia/metabolismo , Antibacterianos/farmacologia , Streptomyces/metabolismo , Antibacterianos/metabolismo , Antibiose , Resistência Microbiana a Medicamentos/fisiologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Interações Microbianas , Microbiologia do Solo
10.
Folia Microbiol (Praha) ; 65(3): 573-590, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31863278

RESUMO

This work aimed to evaluate in vitro antagonistic activities and mechanisms of endophytic yeasts against phytopathogenic fungi. A total of 407 yeast strains isolated from tissue of rice, corn, and sugarcane leaves were evaluated for their antagonistic activities against ten phytopathogenic fungi. Only strains of Wickerhamomyces anomalus and Kodamaea ohmeri were found to inhibit the growth of phytopathogenic fungi. Wickerhamomyces anomalus (seven strains) showed antagonistic activity against Curvularia lunata (cause of dirty panicle disease of rice), three Fusarium moniliforme strains (cause of bakanae disease of rice, stalk rot disease of corn, and red rot disease of sugarcane), and Rhizoctonia solani (cause of sheath blight disease of rice). Whereas four Kodamae ohmeri strains inhibited growth of F. moniliforme (cause of bakanae disease of rice). Antagonistic mechanisms of W. anomalus were based on the production of volatile organic compounds (VOCs) (mainly 3-methyl-1-butyl acetate and 3-methyl-1-butanol), fungal cell wall-degrading enzymes (ß-1,3-glucanase and chitinase), and siderophores as well as phosphate and zinc oxide solubilization. As for K. ohmeri, the production of VOCs (mainly 3-methyl-1-butanol), ß-1,3-glucanase and chitinase were hypothesized as possible mechanisms. The antagonistic activity of W. anomalus against these phytopathogenic fungi and of K. ohmeri against F. moniliforme, and the analysis of the VOCs produced by K. ohmeri are reported for the first time. Two W. anomalus strains, DMKU-RE13 and DMKU-CE52, were evaluated for controlling rice sheath blight disease caused by R. solani in rice plants in the greenhouse and found to suppress the disease 55.2-65.1%, whereas 3% validamycin suppressed this disease by 88.5%.


Assuntos
Antibiose , Fungos/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Leveduras/fisiologia , Agentes de Controle Biológico , Produtos Agrícolas/economia , Produtos Agrícolas/microbiologia , Endófitos/isolamento & purificação , Endófitos/fisiologia , Fungos/patogenicidade , Doenças das Plantas/economia , Doenças das Plantas/prevenção & controle , Folhas de Planta/microbiologia , Tailândia , Leveduras/isolamento & purificação
11.
Sci Rep ; 9(1): 17903, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31784645

RESUMO

The present study was undertaken to assess the antimicrobial activity of Lactobacillus spp. (L. salivarius, L. johnsonii, L. reuteri, L. crispatus, and L. gasseri) against Campylobacter jejuni as well as their immunomodulatory capabilities. The results demonstrated that lactobacilli exhibit differential antagonistic effects against C. jejuni and vary in their ability to elicit innate responses in chicken macrophages. All lactobacilli exerted inhibitory effects on C. jejuni growth, abrogated the production of the quorum sensing molecule autoinducer-2 (AI-2) by C. jejuni and inhibited the invasion of C. jejuni in human intestinal epithelial cells. Additionally, all lactobacilli, except L. reuteri, significantly reduced the expression of virulence-related genes in C. jejuni, including genes responsible for motility (flaA, flaB, and flhA), invasion (ciaB), and AI-2 production (luxS). All lactobacilli enhanced C. jejuni phagocytosis by macrophages and increased the expression of interferon (IFN)-γ, interleukin (IL)-1ß, IL-12p40, IL-10, and chemokine (CXCLi2) in macrophages. Furthermore, L. salivarius, L. reuteri, L. crispatus, and a mixture of all lactobacilli significantly increased expression of the co-stimulatory molecules CD40, CD80, and CD86 in macrophages. In conclusion, these findings demonstrate that lactobacilli possess anti-Campylobacter and immunomodulatory activities. Further studies are needed to assess their protective efficacy against intestinal colonization by C. jejuni in broiler chickens.


Assuntos
Antibiose , Campylobacter jejuni/fisiologia , Citocinas/genética , Lactobacillus/fisiologia , Macrófagos/imunologia , Fagocitose , Animais , Células CACO-2 , Campylobacter jejuni/patogenicidade , Galinhas , Citocinas/metabolismo , Humanos , Lactobacillus/patogenicidade , Macrófagos/microbiologia , Percepção de Quorum
12.
Microb Pathog ; 137: 103773, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31604155

RESUMO

Salmonella enteritidis is an important foodborne pathogen that has caused multiple outbreaks of infection associated with poultry and egg consumption. Thus, the prevention and inhibition of Salmonella enteritidis infection are of great concern. Lactic acid bacteria have anti-pathogenic activity; however, their underlying mechanisms and modes of action have not yet been clarified. In this study, the antibacterial mechanism of Lactobacillus reuteri S5 (L. reuteri S5) against Salmonella enteritidis ATCC13076 (S. enteritidis ATCC13076) was studied by different methods. We found that L. reuteri S5 was able to form a stable biofilm formation, colonizing the entire intestinal tract of chickens. In addition, bacterial cultures and the cell-free supernatant (CFS) of L. reuteri S5 inhibited SE ATCC13076 growth, and this growth inhibition was also observed in the co-culture assay. This effect may be predominantly caused by antimicrobial metabolites produced by L. reuteri S5. Furthermore, treatment with the CFS of L. reuteri S5 resulted in a significant reduction in the expression of Salmonella virulence, motility and adhesion genes and a significant reduction in the motility ability and inhibitory effect on biofilm formation. In addition, the damage to the membrane structure and intracellular structure induced by the CFS of L. reuteri S5 could be observed on Transmission electron microscopy images and dodecyl sulfate, sodium salt (SDS)-Polyacrylamide gel electrophoresis confirmed the disruptive action of the CFS of L. reuteri S5 on the cytoplasmic membrane. Our findings demonstrate that L. reuteri S5, an intestinal Lactobacillus species associated with chicken health, is able to form biofilm and stably colonize chicken intestines. It also possesses anti-SE activity, preventing SE growth, inhibits the expression of SE genes involved in adhesion and invasion, virulence and cell membrane integrity, inhibits SE biofilm formation and motility, damages or destroys bacterial structures, and inhibits intracellular protein synthesis. L. reuteri S5 therefore has potential applications as a probiotic agent.


Assuntos
Limosilactobacillus reuteri/fisiologia , Doenças das Aves Domésticas/tratamento farmacológico , Probióticos/administração & dosagem , Salmonelose Animal/tratamento farmacológico , Salmonella enteritidis/efeitos dos fármacos , Animais , Antibiose , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/efeitos dos fármacos , Galinhas , Doenças das Aves Domésticas/microbiologia , Salmonelose Animal/microbiologia , Salmonella enteritidis/genética , Salmonella enteritidis/fisiologia
13.
J Plant Physiol ; 240: 153008, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31326713

RESUMO

Hop (Humulus lupulus L.) is an important industrial plant providing ingredients for brewing and pharmaceutical industry worldwide. Its intensive production is challenged by numerous diseases. One of the most lethal and difficult to control is verticillium wilt, a vascular disease caused by the fungal pathogen Verticillium nonalfalfae. The disease can be successfully controlled by the host resistance. Despite various studies that already researched resistance mechanisms of hops, only limited number of resistance genes and markers that could be utilized for efficient resistance breeding has been identified. In this study we aimed to follow fungus colonization pattern and the differential expression of selected genes during pre-symptomatic period of susceptible (Celeia) and resistant (Wye Target) hop cultivars. Results of gene expressions and fungal colonisation of compatible and incompatible interactions with V. nonalfalfae suggest that the hop plant is challenged already at the very early fungal colonisation stages. In total, nine out of 17 gene targets investigated in our study resulted in differential expression between inoculated and control plants of susceptible and resistant cultivars. The difference was the most evident in stems at an early stage of colonisation (6 dpi), showing relatively stronger changes in targeted gene expression to infection in the resistant cultivar than in the susceptible one. Analysed gene targets are involved in the overall defence response processes of nucleic acid binding, signalling, protein ubiquitination, cell oxidative burst, hydroxylation, peroxidation, alternative splicing, and metabolite biosynthesis. The up-regulation of some genes (e.g. glycine-rich RNA-binding family protein, protein phosphatase, cysteine-rich receptor-like protein kinase, zinc finger CCCH domain-containing protein 40, cinnamic acid 4-hydroxylase, class III peroxidase, putative MAPK2, peroxiredoxin-2F) upon infection in incompatible interactions might reflect defence activation, restriction of disease spreading throughout the plant and successful response of resistant genotype.


Assuntos
Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Humulus/genética , Doenças das Plantas/genética , Verticillium/fisiologia , Antibiose , Genes de Plantas , Humulus/imunologia , Humulus/microbiologia , Doenças das Plantas/imunologia , Imunidade Vegetal/genética
14.
Food Microbiol ; 83: 64-70, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31202420

RESUMO

Smoked salmon is a highly appreciated delicatessen product. Nevertheless, this ready-to-eat (RTE) product is considered at risk for Listeria monocytogenes, due to both the prevalence and growth potential of this bacteria on the product. Biopreservation may be considered a mild and natural effective strategy for minimizing this risk. In this study, we evaluated the following three potential bioprotective lactic acid bacterial strains against L. monocytogenes in three smoked salmon types with different physicochemical characteristics, primarily fat, moisture, phenol and acid acetic content: two bacteriocin-like producers that were isolated from smoked salmon and identified as Lactobacillus curvatus and Carnobacterium maltaromaticum and a recognized bioprotective bacteriocin producer from meat origin, Lactobacillus sakei CTC494. L. sakei CTC494 inhibited the growth of L. monocytogenes after 21 days of storage at 8 °C in all the products tested, whereas L. curvatus CTC1742 only limited the growth of the pathogen (<2 log increase). The effectiveness of C. maltaromaticum CTC1741 was dependent on the product type; this strain limited the growth of the pathogen in only one smoked salmon type. These results suggest that the meat-borne starter culture, L. sakei CTC494, may potentially be used as a bioprotective culture to improve the food safety of cold-smoked salmon.


Assuntos
Antibiose , Temperatura Baixa , Lactobacillales/fisiologia , Listeria monocytogenes/crescimento & desenvolvimento , Salmão/microbiologia , Alimentos Marinhos/microbiologia , Animais , Bacteriocinas/biossíntese , Contagem de Colônia Microbiana , Embalagem de Alimentos/métodos , Conservação de Alimentos/métodos , Listeria monocytogenes/isolamento & purificação , Listeriose/prevenção & controle , Vácuo
15.
Pest Manag Sci ; 75(10): 2830-2839, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31069939

RESUMO

BACKGROUND: Garlic is the second largest allium crop after onion and is grown all over the world. The onion maggot (Delia antiqua M.) is a pest that seriously affects the yield and quality of garlic. Cultural controls and insecticides have several potential problems, including pesticide residue and development of resistance. Screening resistant varieties is an ideal alternative method. RESULTS: The resistance of 213 accessions of garlic clones against onion maggot was identified. The results showed that the pest index was between 5.56% and 91.11%, with classification into six groups by cluster analysis: HR (highly resistant), R (resistant), MR (moderately resistant), MS (moderately susceptible), S (susceptible) and HS (highly susceptible). Among these accessions, 9 and 30 were HR and R to onion maggot, respectively. Comparing the resistances of seven pairs of accessions between the original accessions and their progenies showed that single bulb clonal selection could be an effective way to improve allicin content, onion maggot resistance and most morphological traits. The relationship between allicin content and resistance was investigated, and a significant positive relationship was found. Accessions with a high content of allicin have great potential as resistant accessions. CONCLUSION: This study showed significant differences among garlic germplasm in their response to Delia antiqua M. Some accessions were highly resistant and tolerant. Utilization of these accessions will help minimize environmental pollution, preserve agro-ecosystems and biodiversity, and make management processes more economical. Furthermore, these accessions could be used in breeding programs to develop new maggot-resistant onion cultivars. © 2019 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Antibiose , Dípteros/fisiologia , Alho/fisiologia , Seleção Genética , Ácidos Sulfínicos/análise , Animais , Dípteros/crescimento & desenvolvimento , Dissulfetos , Larva/crescimento & desenvolvimento , Larva/fisiologia
16.
Arq. bras. med. vet. zootec. (Online) ; 71(2): 647-657, mar.-abr. 2019. tab
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1011286

RESUMO

Minas artisanal cheese is made from endogenous starter cultures, including lactic acid bacteria (LAB). Some LAB may possess probiotic potential. Thus, this study aimed to evaluate the in vitro probiotic properties of lactobacilli isolated from Minas artisanal cheeses produced in Minas Gerais. Ten samples of lactobacilli, formerly isolated from those cheeses, were submitted to the following assays: antimicrobial susceptibility, tolerance to artificial gastric juice and biliary salts, production of hydrogen peroxide and antagonism against pathogenic and non-pathogenic micro-organisms. Only L. plantarum (C0) was sensitive to all tested antimicrobials, while the other LAB samples were resistant to at least one drug. Six samples were tolerant to artificial gastric juice, and L. brevis (A6) even grew in that medium. Three samples were tolerant to biliary salts. Only L. brevis (E35) produced hydrogen peroxide. Difference (P< 0.05) was observed among the means of inhibition haloes of lactobacilli against Enterococcus faecalis ATCC 19433 and Lactobacillus plantarum C24 in spot-on-the-lawn assay. All samples of lactobacilli inhibited Escherichia coli ATCC 25922, Salmonella enterica var. Typhimurium ATCC 14028 in co-culture antagonism test (P< 0.0001). Most lactobacilli samples showed in vitro probiotic potential. From the tested samples, L. brevis (A6) presented the best results considering all in vitro probiotic tests.(AU)


O queijo minas artesanal é produzido por culturas starters endógenas, incluindo bactérias ácido-láticas (BAL). Algumas BAL podem possuir potencial probiótico. Com isso, este estudo teve como objetivo avaliar as propriedades probióticas in vitro de lactobacilos isolados de queijo minas artesanal produzido no estado de Minas Gerais. Dez amostras de lactobacilos, previamente isoladas desses queijos, foram submetidas aos seguintes testes: susceptibilidade aos antimicrobianos, tolerância ao suco gástrico artificial e aos sais biliares, produção de peróxido de hidrogênio e antagonismo contra micro-organismos patogênicos e não patogênicos. Apenas L. plantarum (C0) foi sensível a todos os antimicrobianos testados, enquanto as outras amostras de BAL foram resistentes a, pelo menos, uma droga testada. Seis amostras foram tolerantes ao suco gástrico artificial, e L. brevis (A6) apresentou crescimento nesse meio. Três amostras foram tolerantes aos sais biliares. Apenas L. brevis (E35) produziu peróxido de hidrogênio. Diferença (P<0,05) foi observada entre as médias dos halos de inibição de lactobacilos contra Enterococcus faecalis ATCC 19433 e Lactobacillus plantarum C24 no teste do spot-on-the-lawn. Todas as amostras de lactobacilos inibiram Escherichia coli ATCC 25922, Salmonella enterica var. Typhimurium ATCC 14028 no teste de antagonismo em cocultura (P<0,0001). A maioria das amostras de lactobacilos apresentou potencial probiótico in vitro. Com base nas amostras testadas, L. brevis (A6) apresentou os melhores resultados, considerando-se todos os testes probióticos in vitro.(AU)


Assuntos
Queijo/microbiologia , Probióticos/isolamento & purificação , Lactobacillus/isolamento & purificação , Antibiose
17.
mBio ; 10(1)2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30782658

RESUMO

Selective forces that maintain the polymorphism for aflatoxigenic and nonaflatoxigenic individuals of Aspergillus flavus are largely unknown. As soils are widely considered the natural habitat of A. flavus, we hypothesized that aflatoxin production would confer a fitness advantage in the soil environment. To test this hypothesis, we used A. flavus DNA quantified by quantitative PCR (qPCR) as a proxy for fitness of aflatoxigenic and nonaflatoxigenic field isolates grown in soil microcosms. Contrary to predictions, aflatoxigenic isolates had significantly lower fitness than did nonaflatoxigenic isolates in natural soils across three temperatures (25, 37, and 42°C). The addition of aflatoxin to soils (500 ng/g) had no effect on the growth of A. flavus Amplicon sequencing showed that neither the aflatoxin-producing ability of the fungus nor the addition of aflatoxin had a significant effect on the composition of fungal or bacterial communities in soil. We argue that the fitness disadvantage of aflatoxigenic isolates is most likely explained by the metabolic cost of producing aflatoxin. Coupled with a previous report of a selective advantage of aflatoxin production in the presence of some insects, our findings give an ecological explanation for balancing selection resulting in persistent polymorphisms in aflatoxin production.IMPORTANCE Aflatoxin, produced by the fungus Aspergillus flavus, is an extremely potent hepatotoxin that causes acute toxicosis and cancer, and it incurs hundreds of millions of dollars annually in agricultural losses. Despite the importance of this toxin to humans, it has remained unclear what the fungus gains by producing aflatoxin. In fact, not all strains of A. flavus produce aflatoxin. Previous work has shown an advantage to producing aflatoxin in the presence of some insects. Our current work demonstrates the first evidence of a disadvantage to A. flavus in producing aflatoxin when competing with soil microbes. Together, these opposing evolutionary forces could explain the persistence of both aflatoxigenic and nonaflatoxigenic strains through evolutionary time.


Assuntos
Aflatoxinas/metabolismo , Antibiose , Aspergillus flavus/crescimento & desenvolvimento , Aspergillus flavus/metabolismo , Metabolismo Energético , Venenos/metabolismo , Microbiologia do Solo , Bactérias/crescimento & desenvolvimento , DNA Fúngico/análise , DNA Fúngico/genética , Aptidão Genética , Genética Populacional , Reação em Cadeia da Polimerase em Tempo Real , Temperatura
18.
Microb Pathog ; 118: 126-132, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29550502

RESUMO

The desideratum aim of the present context was to isolate a promising antagonist probiotic bacterium from fermented food item as biocontrol agent against uropathogens. Among diversified isolates evaluated for antagonistic trait, Staphylococcus succinus strain AAS2 was found to be an auspicious candidate against urinary tract infection (UTI) causing bacterial pathogens, being the most active against Staphylococcus aureus with substantial activity of 352.5 ±â€¯5.4 AU/mL. Further, the in vitro probiotic attributes of strain AAS2 were assessed using systematic methodology. The isolate exhibited tolerance to acidic condition (up to pH 3.0) and simulated gastric juice (at pH 3.0) with fairly high survival logarithmic cell counts of 5.3 ±â€¯0.15 and 5.23 ±â€¯0.02 log cfu/mL, respectively. Additionally, strain AAS2 showed capability to resist 0.5% w/v bile salt too. It also revealed significant values of auto-aggregation (32.5 ±â€¯1.3-56.5 ±â€¯1.4%) and cell surface hydrophobicity (38.35 ±â€¯1.4%) properties. The isolate showed resistivity towards phenol (6.8 ±â€¯0.08 log cfu/mL) and lysozyme (58.6 ±â€¯1.6%). Further, the susceptibility trait of strain AAS2 to conventional antibiotics made this isolate a promising probiotic bacterium. Most importantly, the isolate depicted DPPH (2,2-Diphenyl-1-picrylhydrazyl) and hydroxyl radical scavenging activities in a concentration dependent manner, thereby exhibiting its propitious antioxidative properties. In a nutshell, the outcomes of this investigation divulge the plausible use of S. succinus strain AAS2 as biocontrol agent against uropathogens, and recommended further applications in pharmaceutics due to its pronounced probiotic traits.


Assuntos
Antibiose , Probióticos/farmacologia , Staphylococcus/fisiologia , Infecções Urinárias/microbiologia , Antibacterianos/farmacologia , Ácidos e Sais Biliares/farmacologia , Compostos de Bifenilo/farmacologia , DNA Bacteriano , Alimentos Fermentados/microbiologia , Microbiologia de Alimentos , Suco Gástrico , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Radical Hidroxila/farmacologia , Índia , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Muramidase/farmacologia , Fenol/farmacologia , Picratos/farmacologia , Probióticos/isolamento & purificação , Staphylococcus/efeitos dos fármacos , Staphylococcus/genética , Staphylococcus/isolamento & purificação , Staphylococcus aureus/patogenicidade
19.
Plant Dis ; 102(7): 1218-1233, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30673582

RESUMO

International trade and travel are the driving forces behind the spread of invasive plant pathogens around the world, and human-mediated movement of plants and plant products is now generally accepted as the primary mode of their introduction, resulting in huge disturbance to ecosystems and severe socio-economic impact. These problems are exacerbated under the present conditions of rapid climatic change. We report an overview of the Canadian research activities on Phytophthora ramorum. Since the first discovery and subsequent eradication of P. ramorum on infected ornamentals in nurseries in Vancouver, British Columbia, in 2003, a research team of Canadian government scientists representing the Canadian Forest Service, Canadian Food Inspection Agency, and Agriculture and Agri-Food Canada worked together over a 10-year period and have significantly contributed to many aspects of research and risk assessment on this pathogen. The overall objectives of the Canadian research efforts were to gain a better understanding of the molecular diagnostics of P. ramorum, its biology, host-pathogen interactions, and management options. With this information, it was possible to develop pest risk assessments and evaluate the environmental and economic impact and future research needs and challenges relevant to P. ramorum and other emerging forest Phytophthora spp.


Assuntos
Phytophthora/fisiologia , Doenças das Plantas/microbiologia , Pesquisa/estatística & dados numéricos , Árvores/microbiologia , Antibiose/fisiologia , Canadá , Fungicidas Industriais/farmacologia , Geografia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Phytophthora/efeitos dos fármacos , Doenças das Plantas/economia , Pesquisa/economia , Árvores/classificação
20.
Microbiol Res ; 205: 118-124, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28942837

RESUMO

Phenolic acids can enhance the mycotoxin production and activities of hydrolytic enzymes related to pathogenicity of soilborne fungus Fusarium oxysporum. However, characteristics of phenolic acid-degrading bacteria have not been investigated. The objectives of this study were to isolate and characterize bacteria capable of growth on benzoic and vanillic acids as the sole carbon source in the peanut rhizosphere. Twenty-four bacteria were isolated, and the identification based on 16S rRNA gene sequencing revealed that pre-exposure to phenolic acids before sowing shifted the dominant culturable bacterial degraders from Arthrobacter to Burkholderia stabilis-like isolates. Both Arthrobacter and B. stabilis-like isolates catalysed the aromatic ring cleavage via the ortho pathway, and Arthrobacter isolates did not exhibit higher C12O enzyme activity than B. stabilis-like isolates. The culture filtrate of Fusarium sp. ACCC36194 caused a strong inhibition of Arthrobacter growth but not B. stabilis-like isolates. Additionally, Arthrobacter isolates responded differently to the culture filtrates of B. stabilis-like isolates. The Arthrobacter isolates produced higher indole acetic acid (IAA) levels than B. stabilis-like isolates, but B. stabilis-like isolates were also able to produce siderophores, solubilize mineral phosphate, and exert an antagonistic activity against peanut root rot pathogen Fusarium sp. ACCC36194. Results indicate that phenolic acids can shift their dominant culturable bacterial degraders from Arthrobacter to Burkholderia species in the peanut rhizosphere, and microbial interactions might lead to the reduction of culturable Arthrobacter. Furthermore, increasing bacterial populations metabolizing phenolic acids in monoculture fields might be a control strategy for soilborne diseases caused by Fusarium spp.


Assuntos
Arachis/microbiologia , Bactérias/metabolismo , Agentes de Controle Biológico , Hidroxibenzoatos/metabolismo , Doenças das Plantas/prevenção & controle , Rizosfera , Antibiose , Arachis/crescimento & desenvolvimento , Arthrobacter/enzimologia , Arthrobacter/crescimento & desenvolvimento , Arthrobacter/isolamento & purificação , Arthrobacter/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , Ácido Benzoico/metabolismo , Burkholderia/enzimologia , Burkholderia/crescimento & desenvolvimento , Burkholderia/isolamento & purificação , Burkholderia/metabolismo , Catecol 1,2-Dioxigenase/metabolismo , Catecol 2,3-Dioxigenase/metabolismo , Fusarium/patogenicidade , Hidroxibenzoatos/farmacologia , Ácidos Indolacéticos/metabolismo , Fosfatos/metabolismo , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Sideróforos/metabolismo , Solo , Microbiologia do Solo , Ácido Vanílico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA