RESUMO
A cell-based assay employing Madin-Darby canine kidney cells stably expressing human neonatal Fc receptor (FcRn) heavy chain and ß2-microglobulin genes was developed to measure transcytosis of monoclonal antibodies (mAbs) under conditions relevant to the FcRn-mediated immunoglobulin G (IgG) salvage pathway. The FcRn-dependent transcytosis assay is modeled to reflect combined effects of nonspecific interactions between mAbs and cells, cellular uptake via pinocytosis, pH-dependent interactions with FcRn, and dynamics of intracellular trafficking and sorting mechanisms. Evaluation of 53 mAbs, including 30 marketed mAb drugs, revealed a notable correlation between the transcytosis readouts and clearance in humans. FcRn was required to promote efficient transcytosis of mAbs and contributed directly to the observed correlation. Furthermore, the transcytosis assay correctly predicted rank order of clearance of glycosylation and Fv charge variants of Fc-containing proteins. These results strongly support the utility of this assay as a cost-effective and animal-sparing screening tool for evaluation of mAb-based drug candidates during lead selection, optimization, and process development for desired pharmacokinetic properties.
Assuntos
Anticorpos Monoclonais Humanizados/farmacocinética , Antígenos de Histocompatibilidade Classe I/imunologia , Receptores Fc/imunologia , Transcitose/imunologia , Animais , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/metabolismo , Bioensaio/métodos , Cães , Glicosilação , Humanos , Imunoglobulina G/metabolismo , Células Madin Darby de Rim Canino , CamundongosRESUMO
The production of anti-drug antibodies can impact significantly upon the safety and efficacy of biotherapeutics. It is known that various factors, including aggregation and the presence of process-related impurities, can modify and augment the immunogenic potential of proteins. The purpose of the investigations reported here was to characterize in mice the influence of aggregation and host cell protein impurities on the immunogenicity of a humanized single-chain antibody variable fragment (scFv), and mouse albumin. Host cell protein impurities within an scFv preparation purified from Escherichia coli displayed adjuvant-like activity for responses to the scFv in BALB/c strain mice. The 70 000 MW E. coli chaperone protein DnaK was identified as a key contaminant of scFv by mass spectrometric analysis. Preparations of scFv lacking detectable DnaK were spiked with recombinant E. coli DnaK to mimic the process-related impurity. Mice were immunized with monomeric and aggregated preparations, with and without 0·1% DnaK by mass. Aggregation alone enhanced IgM and IgG2a antibody responses, but had no significant effect on total IgG or IgG1 responses. The addition of DnaK further enhanced IgG and IgG2a antibody responses, but only in the presence of aggregated protein. DnaK was shown to be associated with the aggregated scFv by Western blot analysis. Experiments with mouse albumin showed an overall increase in immunogenicity with protein aggregation alone, and the presence of DnaK increased the vigour of the IgG2a antibody response further. Collectively these data reveal that DnaK has the potential to modify and enhance immunogenicity when associated with aggregated protein.
Assuntos
Adenosina Trifosfatases/imunologia , Produtos Biológicos/uso terapêutico , Proteínas de Escherichia coli/imunologia , Proteínas de Choque Térmico HSP70/imunologia , Animais , Anticorpos Monoclonais Humanizados/metabolismo , Formação de Anticorpos , Biotecnologia , Clonagem Molecular , Indústria Farmacêutica , Escherichia coli/imunologia , Feminino , Humanos , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos BALB C , Multimerização Proteica , Albumina Sérica/imunologia , Anticorpos de Cadeia Única/metabolismoRESUMO
In this article, we consider the new drugs approved for the European market in 2015. We present a summary of the new mechanisms of action introduced and highlight three new mechanisms of action with a potentially high future impact: PCSK9 inhibition (alirocumab (Praluent®) and evolocumab (Repatha®)) for hypercholesterolaemia, neprilysin inhibition (sacubitril in combination with valsartan (Entresto®)) for heart failure, and interleukin-5 inhibition (mepolizumab (Nucala®)) for asthma.
Assuntos
Antiasmáticos , Anticorpos Monoclonais Humanizados , Anticorpos Monoclonais , Anti-Hipertensivos , Hipolipemiantes , Antiasmáticos/metabolismo , Antiasmáticos/farmacologia , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados/metabolismo , Anticorpos Monoclonais Humanizados/farmacologia , Anti-Hipertensivos/metabolismo , Anti-Hipertensivos/farmacologia , Aprovação de Drogas , Indústria Farmacêutica , Europa (Continente) , Humanos , Hipolipemiantes/metabolismo , Hipolipemiantes/farmacologia , Transdução de Sinais/efeitos dos fármacosRESUMO
The efficacy and safety of etrolizumab, a humanized IgG1 mAb, were evaluated in patients with ulcerative colitis (UC) in a phase 2 study (EUCALYPTUS). The current study assessed the risk of therapeutic protein drug-drug interaction (TP-DDI) of etrolizumab on CYP3A activity in patients with UC. Literature review was performed to compare serum proinflammatory cytokine levels and pharmacokinetic (PK) parameters of CYP3A substrate drugs between patients with inflammatory bowel disease (IBD) and healthy subjects. Treatment effect of etrolizumab on CYP3A activity was evaluated by measuring colonic CYP3A4 mRNA expression and serum C-reactive protein (CRP) in EUCALYPTUS patients. Literature data suggested similar levels between IBD patients and healthy subjects for serum proinflammatory cytokines and PK parameters of CYP3A substrate drugs. Additionally, treatment with etrolizumab did not change colonic CYP3A4 mRNA expression or serum CRP levels in UC patients. In conclusion, our results indicate a low TP-DDI risk for etrolizumab in UC patients, particularly on medications metabolized by CYP3A.
Assuntos
Anticorpos Monoclonais Humanizados/metabolismo , Proteína C-Reativa/metabolismo , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Citocromo P-450 CYP3A/metabolismo , Índice de Gravidade de Doença , Anticorpos Monoclonais Humanizados/uso terapêutico , Colite Ulcerativa/diagnóstico , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Método Duplo-Cego , Interações Medicamentosas/fisiologia , Humanos , Internacionalidade , Ligação Proteica/fisiologiaRESUMO
The delivery of nucleic acids is a major hurdle in gene therapy or therapeutic gene knockdown, and the development of intelligent and safe nanoparticles as carrier systems is thus under intense investigation. The introduction of ligands for their targeted delivery is of major interest. Here, we describe a novel approach for the analysis of the binding properties of antibody-functionalized nanoparticles, using surface plasmon resonance (SPR) in a static cuvette system. By chemical coupling of the Epidermal Growth Factor Receptor (EGFR)-specific antibody cetuximab to poly(ethylene imine) (PEI) via a PEG-spacer and subsequent DNA or siRNA complexation, we generated targeted nanoplexes with low surface charge. Antibody-mediated uptake into EGFR overexpressing cells was observed. SPR measurements with use of a novel, protein A-based sandwich system for the immobilization of the target receptor in its correct steric orientation allowed the analysis of the specific PEI-PEG-cetuximab binding to EGFR and the determination of binding affinities. Importantly, our cuvette-based SPR assay system was also suitable for the monitoring of ligand-mediated nanoparticle binding, without convection or shear stress. We conclude that our SPR sandwich system allows the precise analysis of the binding of ligand-functionalized nanoparticles in real-time, and we thus establish SPR for the in vitro evaluation of ligand modifications for generating targeted nanoparticles.
Assuntos
Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/metabolismo , Receptores ErbB/antagonistas & inibidores , Nanopartículas/metabolismo , Ressonância de Plasmônio de Superfície/métodos , Anticorpos Monoclonais Humanizados/administração & dosagem , Cetuximab , Sistemas de Liberação de Medicamentos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Técnicas de Transferência de Genes , Humanos , Iminas/química , Proteínas Imobilizadas/metabolismo , Ligantes , Nanopartículas/administração & dosagem , Nanopartículas/química , Polietilenoglicóis/química , Polietilenoimina/análogos & derivados , Polietilenoimina/química , Polietilenos/química , RNA Interferente Pequeno , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismoRESUMO
The European Medicines Agency received recently the first marketing authorization application for a biosimilar monoclonal antibody (mAb) and adopted the final guidelines on biosimilar mAbs and Fc-fusion proteins. The agency requires high similarity between biosimilar and reference products for approval. Specifically, the amino acid sequences must be identical. The glycosylation pattern of the antibody is also often considered to be a very important quality attribute due to its strong effect on quality, safety, immunogenicity, pharmacokinetics and potency. Here, we describe a case study of cetuximab, which has been marketed since 2004. Biosimilar versions of the product are now in the pipelines of numerous therapeutic antibody biosimilar developers. We applied a combination of intact, middle-down, middle-up and bottom-up electrospray ionization and matrix assisted laser desorption ionization mass spectrometry techniques to characterize the amino acid sequence and major post-translational modifications of the marketed cetuximab product, with special emphasis on glycosylation. Our results revealed a sequence error in the reported sequence of the light chain in databases and in publications, thus highlighting the potency of mass spectrometry to establish correct antibody sequences. We were also able to achieve a comprehensive identification of cetuximab's glycoforms and glycosylation profile assessment on both Fab and Fc domains. Taken together, the reported approaches and data form a solid framework for the comparability of antibodies and their biosimilar candidates that could be further applied to routine structural assessments of these and other antibody-based products.
Assuntos
Anticorpos Monoclonais Humanizados/química , Medicamentos Biossimilares/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Sequência de Aminoácidos , Anticorpos Monoclonais Humanizados/genética , Anticorpos Monoclonais Humanizados/metabolismo , Sítios de Ligação , Medicamentos Biossimilares/metabolismo , Cetuximab , Glicosilação , Humanos , Dados de Sequência Molecular , Reprodutibilidade dos TestesRESUMO
Vedolizumab (VDZ) is a humanized monoclonal antibody in development for the treatment of inflammatory bowel disease. VDZ binds to the α4ß7 integrin complex and inhibits its binding to mucosal addressin cell adhesion molecule-1 (MAdCAM-1), thus preventing lymphocyte extravasation to gut mucosal tissues. To understand whether VDZ has additional effects that may affect its overall safety as a therapeutic molecule, we examined other potential actions of VDZ. In vitro assays with human peripheral blood lymphocytes demonstrated that VDZ fails to elicit cytotoxicity, lymphocyte activation, and cytokine production from memory T lymphocytes and does not interfere with the suppressive ability of regulatory T cells. Furthermore, we demonstrated that VDZ induces internalization of α4ß7 and that the integrin is rapidly re-expressed and fully functional after VDZ withdrawal. These studies provide insight into the mechanisms underlying the observed safety profile of VDZ in clinical trials.