Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Food Chem ; 443: 138502, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38306909

RESUMO

The present investigation explored the antifungal effectiveness of Trachyspermum ammi essential oil (TAEO) against Aspergillus flavus, aflatoxin B1 (AFB1) contamination, and its mechanism of action using biochemical and computational approaches. The GC-MS result revealed the chemical diversity of TAEO with the highest percentage of γ-terpinene (39 %). The TAEO exhibited minimum inhibitory concentration against A. flavus growth (0.5 µL/mL) and AFB1 (0.4 µL/mL) with radical scavenging activity (IC50 = 2.13 µL/mL). The mechanism of action of TAEO was associated with the alteration in plasma membrane functioning, antioxidative defense, and carbon source catabolism. The molecular dynamic result shows the multi-regime binding of γ-terpinene with the target proteins (Nor1, Omt1, and Vbs) of AFB1 biosynthesis. Furthermore, TAEO exhibited remarkable in-situ protection of Sorghum bicolor seed samples against A. flavus and AFB1 contamination and protected the nutritional deterioration. Hence, the study recommends TAEO as a natural antifungal agent for food protection against A. flavus mediated biodeterioration.


Assuntos
Ammi , Apiaceae , Monoterpenos Cicloexânicos , Óleos Voláteis , Sorghum , Aspergillus flavus/metabolismo , Óleos Voláteis/química , Aflatoxina B1/metabolismo , Sorghum/metabolismo , Ammi/metabolismo , Antifúngicos/química , Apiaceae/metabolismo
2.
Sci Rep ; 11(1): 14281, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34253776

RESUMO

We aimed to explore and compare new insights on the pharmacological potential of Oliveria decumbence essential oil (OEO) and its main components highlighting their antioxidant activity in-vitro, in-vivo, and in-silico and also cytotoxic effects of OEO against A549 lung cancer cells. At first, based on GC-MS analysis, thymol, carvacrol, p-cymene, and γ-terpinene were introduced as basic ingredients of OEO and their in-vitro antioxidant capacity was considered by standard methods. Collectively, OEO exhibited strong antioxidant properties even more than its components. In LPS-stimulated macrophages treated with OEO, the reduction of ROS (Reactive-oxygen-species) and NO (nitric-oxide) and down-regulation of iNOS (inducible nitric-oxide-synthase) and NOX (NADPH-oxidase) mRNA expression was observed and compared with that of OEO components. According to the results, OEO, thymol, and carvacrol exhibited the highest radical scavenging potency compared to p-cymene, and γ-terpinene. In-silico Molecular-Docking and Molecular-Dynamics simulation indicated that thymol and carvacrol but no p-cymene and γ-terpinene may establish coordinative bonds in iNOS active site and thereby inhibit iNOS. However, they did not show any evidence for NOX inhibition. In the following, MTT assay showed that OEO induces cytotoxicity in A549 cancer cells despite having a limited effect on L929 normal cells. Apoptotic death and its dependence on caspase-3 activity and Bax/Bcl2 ratio in OEO-treated cells were established by fluorescence microscopy, flow cytometry, colorimetric assay, and western blot analysis. Additionally, flow cytometry studies demonstrated increased levels of ROS in OEO-treated cells. Therefore, OEO, despite showing antioxidant properties, induces apoptosis in cancer cells by increasing ROS levels. Collectively, our results provided new insight into the usage of OEO and main components, thymol, and carvacrol, into the development of novel antioxidant and anti-cancer agents.


Assuntos
Apiaceae/metabolismo , Sequestradores de Radicais Livres , Óleos Voláteis/química , Células A549 , Animais , Antioxidantes/química , Apoptose , Caspase 3/metabolismo , Linhagem Celular , Simulação por Computador , Monoterpenos Cicloexânicos , Cimenos/farmacologia , Regulação para Baixo , Humanos , Técnicas In Vitro , Concentração Inibidora 50 , Ligantes , Macrófagos/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Monoterpenos/farmacologia , Óxido Nítrico Sintase Tipo II/metabolismo , RNA Mensageiro/metabolismo , Timol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA