Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.002
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Molecules ; 29(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38731532

RESUMO

A series of flavanols were synthesized to assess their biological activity against human non-small cell lung cancer cells (A549). Among the sixteen synthesized compounds, it was observed that compounds 6k (3.14 ± 0.29 µM) and 6l (0.46 ± 0.02 µM) exhibited higher potency compared to 5-fluorouracil (5-Fu, 4.98 ± 0.41 µM), a clinical anticancer drug which was used as a positive control. Moreover, compound 6l (4'-bromoflavonol) markedly induced apoptosis of A549 cells through the mitochondrial- and caspase-3-dependent pathways. Consequently, compound 6l might be developed as a candidate for treating or preventing lung cancer.


Assuntos
Antineoplásicos , Apoptose , Flavonóis , Humanos , Flavonóis/farmacologia , Flavonóis/síntese química , Flavonóis/química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Células A549 , Caspase 3/metabolismo , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Estrutura Molecular , Fluoruracila/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Linhagem Celular Tumoral
2.
Mol Biol Rep ; 51(1): 591, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683228

RESUMO

BACKGROUND: Graphene oxide nanosheets (GONS) are recognized for their role in enhancing drug delivery and effectiveness in cancer treatment. With colon cancer being a prevalent global issue and the significant side effects associated with chemotherapy, the primary treatment for colon cancer alongside surgery, there is a critical need for novel therapeutic strategies to support patients in combating this disease. Hesperetin (HSP), a natural compound found in specific fruits, exhibits anti-cancer properties. The aim of this study is to investigate the effect of GONS on the LS174t colon cancer cell line. METHODS: In this study, an anti-cancer nano-drug was synthesized by creating a hesperetin-graphene oxide nanocomposite (Hsp-GO), which was subsequently evaluated for its efficacy through in vitro cell toxicity assays. Three systems were investigated: HSP, GONS, and HSP-loaded GONS, to determine their cytotoxic and pro-apoptotic impacts on the LS174t colon cancer cell line, along with assessing the expression of BAX and BCL2. The morphology and properties of both GO and Hsp-GO were examined using scanning electron microscopy (SEM), X-ray diffraction, and Fourier transform infrared spectroscopy (FTIR). RESULTS: The Hsp-GO nanocomposite displayed potent cytotoxic and pro-apoptotic effects on LS174t colon cancer cells, outperforming individual treatments with HSP or GONS. Cell viability assays showed a significant decrease in cell viability with Hsp-GO treatment. Analysis of BAX and BCL2 expression revealed elevated BAX and reduced BCL2 levels in Hsp-GO treated cells, indicating enhanced apoptotic activity. Morphological analysis confirmed successful Hsp-GO synthesis, while structural integrity was supported by X-ray diffraction and FTIR analyses. CONCLUSIONS: These study highlight the potential of Hsp-GO as a promising anti-cancer nano-drug for colon cancer therapy.


Assuntos
Neoplasias do Colo , Sistemas de Liberação de Medicamentos , Grafite , Hesperidina , Grafite/química , Grafite/farmacologia , Humanos , Hesperidina/farmacologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Neoplasias do Colo/metabolismo , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Nanocompostos/química , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/genética
3.
Front Biosci (Landmark Ed) ; 29(4): 162, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38682177

RESUMO

BACKGROUND AND OBJECTIVE: There is a growing need to comprehend the potential outcomes of nanoparticles (NPs) on human well-being, including their potential for detecting and treating leukemia. This study examined the role of iron folate core-shell and iron oxide nanoparticles in inducing apoptosis and altering the expression of the B-cell lymphoma 2 (Bcl-2), Bcl-2 associated X-protein (Bax), and Caspase-3 genes in leukemia cells. METHODS: The obtained iron oxide and iron folate core-shell nanoparticles were analyzed using a variety of analytical techniques, including ultraviolet-visible (UV-Vis) absorption spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), dynamic light scattering (DLS), zeta potential, and transmission electron microscopy (TEM). Additionally, FTIR and UV-Vis were used to characterize doxorubicin. The MTT test was utilized to investigate the cytotoxicity of iron oxide and iron folate core-shell nanoparticles. The expression of the apoptotic signaling proteins Bcl-2, Bax, and Caspase-3 was evaluated using the real-time reverse transcription polymerase chain reaction (RT-qPCR) method. Additionally, flow cytometry was performed to gauge the degrees of necrosis and apoptosis. RESULTS: UV-Visible spectroscopy analysis showed that the generated iron oxide and iron folate core-shell NPs had a distinctive absorption curve in the 250-300 nm wavelength range. The XRD peaks were also discovered to index the spherical form with a size of less than 50 nm, which validated the crystal structure. The FTIR analysis determined the bonds and functional groups at wavenumbers between 400 and 4000 cm-1. A viable leukemia treatment approach is a nanocomposite consisting of iron and an iron folate core-shell necessary for inhibiting and activating cancer cell death. The nearly resistant apoptosis in the CCRF-CEM cells may have resulted from upregulating Bax and Casepase-3 while downregulating Bcl-2 expression. CONCLUSIONS: Our study documents the successful synthetization and characterization of iron oxide, which has excellent anticancer activities. A metal oxide conjugation with the nanoparticles' core-shell enhanced the effect against acute leukemia.


Assuntos
Apoptose , Ácido Fólico , Humanos , Ácido Fólico/química , Ácido Fólico/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Caspase 3/metabolismo , Nanopartículas Magnéticas de Óxido de Ferro/química , Leucemia/tratamento farmacológico , Leucemia/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/genética , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/química , Compostos Férricos/química
4.
Biomater Adv ; 160: 213866, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38642518

RESUMO

Research on biomaterials typically starts with cytocompatibility evaluation, using the ISO 10993-5 standard as a reference that relies on extract tests to determine whether the material is safe (cell metabolic activity should exceed 70 %). However, the generalized approach within the standard may not accurately reflect the material's behavior in direct contact with cells, raising concerns about its effectiveness. Calcium phosphates (CaPs) are a group of materials that, despite being highly biocompatible and promoting bone formation, still exhibit inconsistencies in basic cytotoxicity evaluations. Hence, in order to test the cytocompatibility dependence on different experimental setups and material-cell interactions, we used amorphous calcium phosphate, α-tricalcium phosphate, hydroxyapatite, and octacalcium phosphate (0.1 mg/mL to 5 mg/mL) with core cell lines of bone microenvironment: mesenchymal stem cells, osteoblast-like and endothelial cells. All materials have been characterized for their physicochemical properties before and after cellular contact and once in vitro assays were finalized, groups identified as 'cytotoxic' were further analyzed using a modified Annexin V apoptosis assay to accurately determine cell death. The obtained results showed that indirect contact following ISO standards had no sensitivity of tested cells to the materials, but direct contact tests at physiological concentrations revealed decreased metabolic activity and viability. In summary, our findings offer valuable guidelines for handling biomaterials, especially in powder form, to better evaluate their biological properties and avoid false negatives commonly associated with the traditional standard approach.


Assuntos
Materiais Biocompatíveis , Fosfatos de Cálcio , Durapatita , Teste de Materiais , Células-Tronco Mesenquimais , Osteoblastos , Fosfatos de Cálcio/química , Materiais Biocompatíveis/toxicidade , Materiais Biocompatíveis/farmacologia , Humanos , Teste de Materiais/métodos , Teste de Materiais/normas , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Linhagem Celular , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Animais
5.
Sci Rep ; 14(1): 9636, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671055

RESUMO

In consideration of the chromones' therapeutic potential and anticancer activity, a new series of chromanone derivatives have been synthesized through a straightforward reaction between 6-formyl-7-hydroxy-5-methoxy-2-methylchromone (2) and various organic active compounds. The cytotoxic activity of the newly synthesized congeners was investigated against MCF-7 (human breast cancer), HCT-116 (colon cancer), HepG2 (liver cancer), and normal skin fibroblast cells (BJ1). The obtained data indicated that compounds 14b, 17, and 19 induce cytotoxic activity in the breast MCF7, while compounds 6a, 6b, 11 and 14c showed highly potent activity in the colon cancer cell lines. Overall, the results demonstrate that the potential cytotoxic effects of the studied compounds may be based on their ability to induce DNA fragmentation in cancer cell lines, down-regulate the expression level of CDK4 as well as the anti-apoptotic gene Bcl-2 and up-regulate the expression of the pro-apoptotic genes P53 and Bax. Furthermore, compounds 14b and 14c showed a dual mechanism of action by inducing apoptosis and cell cycle arrest. The docking studies showed that the binding affinity of the most active cytotoxic compounds within the active pocket of the CDK4 enzyme is stronger due to hydrophobic and H-bonding interactions. These results were found to be consistent with the experimental results.


Assuntos
Antineoplásicos , Apoptose , Cromonas , Simulação de Acoplamento Molecular , Humanos , Cromonas/química , Cromonas/farmacologia , Cromonas/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Apoptose/efeitos dos fármacos , Células MCF-7 , Linhagem Celular Tumoral , Células HCT116 , Células Hep G2 , Quinase 4 Dependente de Ciclina/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Proteína Supressora de Tumor p53/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Ensaios de Seleção de Medicamentos Antitumorais
6.
J Med Chem ; 67(8): 6425-6455, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38613499

RESUMO

The RAS-RAF-MEK-ERK signaling cascade is abnormally activated in various tumors, playing a crucial role in mediating tumor progression. As the key component at the terminal stage of this cascade, ERK1/2 emerges as a potential antitumor target and offers a promising therapeutic strategy for tumors harboring BRAF or RAS mutations. Here, we identified 36c with a (thiophen-3-yl)aminopyrimidine scaffold as a potent ERK1/2 inhibitor through structure-guided optimization for hit 18. In preclinical studies, 36c showed powerful ERK1/2 inhibitory activities (ERK1/2 IC50 = 0.11/0.08 nM) and potent antitumor efficacy both in vitro and in vivo against triple-negative breast cancer and colorectal cancer models harboring BRAF and RAS mutations. 36c could directly inhibit ERK1/2, significantly block the phosphorylation expression of their downstream substrates p90RSK and c-Myc, and induce cell apoptosis and incomplete autophagy-related cell death. Taken together, this work provides a promising ERK1/2 lead compound for multiple tumor-treatment drug discovery.


Assuntos
Antineoplásicos , Inibidores de Proteínas Quinases , Pirimidinas , Humanos , Pirimidinas/farmacologia , Pirimidinas/síntese química , Pirimidinas/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química , Animais , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Relação Estrutura-Atividade , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Tiofenos/farmacologia , Tiofenos/síntese química , Tiofenos/química , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Linhagem Celular Tumoral , Descoberta de Drogas , Apoptose/efeitos dos fármacos , Feminino , Camundongos Nus , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Proliferação de Células/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Endogâmicos BALB C
7.
Methods Cell Biol ; 181: 43-58, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38302243

RESUMO

Senescence is a state of irreversible cell cycle arrest accompanied by the acquisition of the senescence-associated secretory phenotype (SASP), which is activated in response to a variety of damaging stimuli, including genotoxic therapy. Accumulating evidence indicates that mitotic stress also promotes entry into senescence. This occurs via a mechanism involving defective mitoses and mitotic arrest, followed by abortion of cell division and slippage in the G1 phase. In this process, mitotic slippage leads to the generation of senescent cells characterized by a large cell body and a multinucleated and/or enlarged nuclear size. Here, we provide a detailed protocol for the assessment of cell proliferation and mitotic slippage in colorectal cancer cells upon pharmacological inhibition of the mitotic kinesin KIF11, best known as EG5. This approach can be used for preliminary characterization of senescence induction by therapeutics, but requires validation with standard senescence assays.


Assuntos
Apoptose , Mitose , Microscopia de Vídeo , Mitose/genética , Proliferação de Células
8.
J Photochem Photobiol B ; 253: 112871, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38402658

RESUMO

Programmed cell death or apoptosis is a critically important mechanism of tissue remodeling and regulates conditions such as cancer, neurodegeneration or stroke. The aim of this research article was to assess the caged Z-DEVD-aminoluciferin substrate for in vivo monitoring of apoptosis after ischemic stroke in TLR2-deficient mice and their TLR2-expressing counterparts. Postischemic inflammation is a significant contributor to ischemic injury development and apoptosis, and it is modified by the TLR2 receptor. Caged Z-DEVD-aminoluciferin is made available for bioluminescence enzymatic reaction by cleavage with activated caspase-3, and therefore it is assumed to be capable of reporting and measuring apoptosis. Apoptosis was investigated for 28 days after stroke in mice which ubiquitously expressed the firefly luciferase transgene. Middle cerebral artery occlusion was performed to achieve ischemic injury, which was followed with magnetic resonance imaging. The scope of apoptosis was determined by bioluminescence with caged Z-DEVD-aminoluciferin, immunofluorescence with activated caspase-3, flow cytometry with annexin-V and TUNEL assay. The linearity of Z-DEVD-aminoluciferin substrate dose effect was shown in the murine brain. Z-DEVD-aminoluciferin was validated as a good tool for monitoring apoptosis following adequate adjustment. By utilizing bioluminescence of Z-DEVD-aminoluciferin after ischemic stroke it was shown that TLR2-deficient mice had lower post-stroke apoptosis than TLR2-expressing wild type mice. In conclusion, Z-DEVD-aminoluciferin could be a valuable tool for apoptosis measurement in living mice.


Assuntos
Luciferina de Vaga-Lumes/análogos & derivados , AVC Isquêmico , Oligopeptídeos , Receptor 2 Toll-Like , Camundongos , Animais , Caspase 3/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Apoptose
9.
Bull Math Biol ; 86(2): 18, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38236346

RESUMO

We consider a time-continuous Markov branching process of proliferating cells with a countable collection of types. Among-type transitions are inspired by the Tug-of-War process introduced by McFarland et al. (Proc Natl Acad Sci 111(42):15138-15143, 2014) as a mathematical model for competition of advantageous driver mutations and deleterious passenger mutations in cancer cells. We introduce a version of the model in which a driver mutation pushes the type of the cell L-units up, while a passenger mutation pulls it 1-unit down. The distribution of time to divisions depends on the type (fitness) of cell, which is an integer. The extinction probability given any initial cell type is strictly less than 1, which allows us to investigate the transition between types (type transition) in an infinitely long cell lineage of cells. The analysis leads to the result that under driver dominance, the type transition process escapes to infinity, while under passenger dominance, it leads to a limit distribution. Implications in cancer cell dynamics and population genetics are discussed.


Assuntos
Conceitos Matemáticos , Neoplasias , Modelos Biológicos , Apoptose , Linhagem da Célula , Cadeias de Markov , Neoplasias/genética
10.
Bioorg Chem ; 144: 107122, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38278049

RESUMO

Non-platinum metal-based complexes have good potential for cancer treatment. Here, we designed and synthesized five hydrazone copper(II) complexes, [Cu2(HL)2Cl2] 1A, [Cu2(HL)2(NO3)H2O]·NO3 2A, [Cu2(HL)2Br2] 3A, [Cu(L)pyridine] 1B and [Cu(HL)(pyridine)Br] 3B, and evaluated their anti-lung cancer activities. MTT experiments revealed that these copper(II) complexes exhibit higher anticancer activity than cisplatin. Mechanism studies revealed that complex 3A induced G1 phase cell cycle arrest, and induced cell apoptosis via reactive oxygen species (ROS)-mediated mitochondrial dysfunction. Scratch wound healing assay was also performed, revealing that complex 3A have good anti-cell migration activity. Hemolysis assays showed good blood biocompatibility of complex 3A. Furthermore, complex 3A can significantly inhibit the proliferation of A549 3D tumor spheroid. An in vivo anticancer study showed that complex 3A could delays the growth of A549 tumor xenografts with lower systemic toxicity. These results highlight the great possibility of developing highly active copper complexes as anti-lung cancer agents.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias Pulmonares , Humanos , Cobre/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Modelos Moleculares , Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/uso terapêutico , Piridinas/farmacologia , Apoptose , Linhagem Celular Tumoral
11.
J Biochem Mol Toxicol ; 38(1): e23536, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37942797

RESUMO

This study aimed to present new data on the side effects of favipiravir on healthy lung tissue and the respiratory system. In the study, two different durations (5 and 10 days) were preferred to determine the effect of favipiravir treatment due to clinical improvement rates of approximately 5 and 10 days during the use of favipiravir in COVID-19 patients. In addition, after 10 days of favipiravir treatment, animals were kept for 5 days without any treatment to determine the regeneration of lung tissues. Favipiravir was administered to rats by oral gavage at a daily dose of 200 mg/kg for 5 and 10 days, as in previous studies. At the end of the experiment, the histopathological and biochemical effects of favipiravir in the lung tissue were investigated. The data obtained from the study showed that favipiravir increased oxidative stress parameters, expression of apoptotic markers, and pro-inflammatory markers in lung tissue. Since malondialdehydes is an oxidant parameter, it increased in favipiravir-administered groups; It was determined that the antioxidant parameters glutathione, superoxide dismutase, glutathione peroxidase, and catalase decreased. Other markers used in the analysis are Bcl-2, Bax, NF-κB, interleukin (IL)-6, Muc1, iNOS, P2X7R, IL-6 and caspase-3. The levels of Bax, caspase-3, NF-κB, IL-6, Muc1, and P2X7R were increased in the Fav-treated groups compared with the control. However, the levels of Bcl-2 decreased in the Fav-treated groups. The present study proves that favipiravir, widely used today, causes side effects in lung tissue.


Assuntos
Amidas , Interleucina-6 , NF-kappa B , Pirazinas , Humanos , Ratos , Animais , Caspase 3/metabolismo , NF-kappa B/metabolismo , Proteína X Associada a bcl-2/metabolismo , Interleucina-6/metabolismo , Antioxidantes/farmacologia , Estresse Oxidativo , Pulmão/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Apoptose
12.
Chest ; 165(2): 461-474, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37739030

RESUMO

BACKGROUND: Programmed cell death ligand-1 (PD-L1) expression on tumor cells, evaluated by immunohistochemistry, guides the use of immunotherapy in advanced non-small cell lung cancer (NSCLC). RESEARCH QUESTION: What is the sensitivity and specificity of PD-L1 testing performed in cytologic vs paired histologic specimens in patients with NSCLC? STUDY DESIGN AND METHODS: The MEDLINE, Embase, Web of Science, and Cochrane Library databases were searched through June 1, 2021. The primary outcome was pooled sensitivity and specificity of PD-L1 testing performed on cytologic specimens compared with the reference standard of histologic specimens, analyzed at the PD-L1 expression cutoffs (tumor proportion score) ≥ 1% and ≥ 50%. Pooled sensitivity and specificity, and associated 95% CIs, were estimated using bivariate generalized linear mixed models. RESULTS: Twenty-six articles were included, encompassing a total of 1,064 pairs of histology specimens and cytology cell blocks, and 267 pairs of histology specimens and direct smears. Among these, 946 paired specimens were acquired without interval treatment between the collection of histology and cytology samples. The pooled sensitivity and specificity of cytology specimens compared with paired histology specimens at the PD-L1 expression cutoff ≥ 1% were 0.84 (95% CI, 0.77-0.89) and 0.88 (95% CI, 0.82-0.93), respectively, whereas the pooled sensitivity and specificity at cutoff ≥ 50% were 0.78 (95% CI, 0.69-0.86) and 0.94 (95% CI, 0.91-0.96), respectively. When only paired specimens acquired without interval treatment were considered, the pooled sensitivity and specificity of cytology specimens at PD-L1 expression cutoff ≥ 1% were 0.84 (95% CI, 0.76-0.90) and 0.89 (95% CI, 0.82-0.94), respectively, whereas the pooled sensitivity and specificity at cutoff ≥ 50% were 0.80 (95% CI, 0.71-0.89) and 0.94 (95% CI, 0.91-0.96), respectively. INTERPRETATION: Cytologic specimens provide an accurate assessment of PD-L1 expression in most patients with NSCLC, at both ≥ 1% and ≥ 50% cutoffs, when compared with histologic specimens. TRIAL REGISTRATION: PROSPERO; No.: CRD42020153279; URL: https://www.crd.york.ac.uk/prospero/.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Antígeno B7-H1/metabolismo , Ligantes , Biomarcadores Tumorais/análise , Apoptose
13.
J Gene Med ; 26(1): e3643, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38044747

RESUMO

BACKGROUND: Programmed cell death (PCD) has been widely investigated in various human diseases. The present study aimed to identify a novel PCD-related genetic signature in cervical squamous cell carcinoma (CESC) to provide clues for survival, immunotherapy and drug sensitization prediction. METHODS: Single-sample gene set enrichment analysis (ssGSEA) was used to quantify the PCD score and assess the distribution of PCD in clinicopathological characteristics in The Cancer Genome Atlas (TCGA)-CESC samples. Then, the ConsensusClusterPlus method was used to identify molecular subtypes in the TCGA-CESC database. Genomic mutation analysis, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functional enrichment, as well as tumor microenvironment (TME) infiltration analysis, were performed for each molecular subtype group. Finally, a prognostic model by Uni-Cox and least absolute shrinkage and selection operator-Cox analysis was established based on differentially expressed genes from molecular subtypes. ESTIMATE (i.e. Estimation of STromal and Immune cells in MAlignantTumours using Expression data) and ssGSEA were performed to assess the correlation between the model and TME. Drug sensitization prediction was carried out with the oncoPredict package. RESULTS: Preliminary analysis indicated that PCD had a potential association clinical characteristics of the TCGA-CESC cohort, and PCD-related genes mutated in 289 (70.59%) CESC patients. Next, four groups of CESC molecular typing were clustered based on 63 significantly prognostic PCD-related genes. Among four subtypes, C1 group displayed the worst prognosis combined with over expressed PCD genes and enriched cell cycle-related pathways. C4 group exhibited the best prognosis accompanied with high degree of immune infiltration. Finally, a five-gene (SERPINE1, TNF, CA9, CX3CL1 and JAK3) prognostic model was constructed. Patients in the high-risk group displayed unfavorable survival. Immune infiltration analysis found that the low-risk group had significantly higher levels of immune cell infiltration such as T cells, Macrophages_M1, relative to the high-risk group, and were significantly enriched in apoptosis-associated pathways, which predicted a higher level of immunity. Drug sensitivity correlation analysis revealed that the high-risk group was resistant to conventional chemotherapeutic drugs and sensitive to the Food and Drug Administration-approved drugs BI.2536_1086 and SCH772984_1564. CONCLUSIONS: In the present study, we first found that PCD-related gene expression patterns were correlated with clinical features of CESC patients, which predicts the feasibility of subsequent mining of prognostic features based on these genes. The five-PCD-associated-gene prognostic model showed good assessment ability in predicting patient prognosis, immune response and drug-sensitive response, and provided guidance for the elucidation of the mechanism by which PCD affects CESC, as well as for the clinical targeting of drugs.


Assuntos
Carcinoma de Células Escamosas , Neoplasias do Colo do Útero , Estados Unidos , Humanos , Feminino , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/genética , Prognóstico , Apoptose , Biomarcadores , Microambiente Tumoral/genética
14.
J Complement Integr Med ; 21(1): 61-70, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38016708

RESUMO

OBJECTIVES: The invasive screening methods and the late stage diagnosis of colorectal carcinoma (CRC) are contributing for the devastative prognosis. The gradual shift of the disease pattern among younger generations requires the implementation of phytochemicals and traditional medicines. Arkeshwara rasa (AR) is a herb-mineral combination of Tamra bhasma/incinerated copper ashes and Dwigun Kajjali/mercury sulphide levigated with Calotropis procera leaf juice, Plumbago zeylanica root decoction and the decoction of three myrobalans (Terminalia chebula, Terminalia bellerica, Emblica Officinalis decoction)/Triphala decoction. METHODS: The SW-480 cell line was checked for the cytotoxicity and the cell viability criteria with MTT(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide) assay. The acridine orange/ethidium bromide (AO/EtBr) assay revealed the depth of apoptosis affected cells in the fluorescent images. The FTIR analysis exhibited the graphical spectrum of functional groups within the compound AR. RESULTS: The IC50 from the 10-7 to 10-3 concentrations against SW-480 cells was 40.4 µg/mL. The staining of AO/EtBr was performed to visualize live and dead cells and it is evident from the result that number of apoptotic cells increases at increasing concentration of AR. The single bond with stretch vibrations of O-H and N-H are more concentrated in the 2,500-3,200 cm-1 and 3,700-4,000 cm-1 of the spectra whereas, the finger print region carries the O-H and S=O type peaks. CONCLUSIONS: The AR shows strong cyto-toxicity against the SW-480 cells by inducing apoptosis. It also modulates cellular metabolism with the involvement of functional groups which antagonizes the strong acids. Moreover, these effects need to be analyzed further based in the in vivo and various in vitro models.


Assuntos
Apoptose , Minerais , Dados Preliminares , Linhagem Celular , Minerais/farmacologia
15.
Int J Mol Sci ; 24(21)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37958891

RESUMO

Myxofibrosarcoma (MFS) is a subtype of soft tissue sarcoma of connective tissue, which is characterized by large intra-tumor heterogeneity. Therapy includes surgical resection. Additional chemotherapy is of limited effect. In this study, we demonstrated the potent anticancer activity of shikonin derivatives in our MFS cellular model of tumor heterogeneity for developing a new therapeutic approach. The impact of shikonin and ß,ß-dimethylacrylshikonin (DMAS) on viability, apoptotic induction, MAPK phosphorylation, and DNA damage response were analyzed by means of two human MFS cell lines, MUG-Myx2a and MUG-Myx2b, derived from a singular tumor tissue specimen. MFS cells showed a dose-dependent inhibition of cell viability and a significant induction of apoptosis. Treatment with shikonin derivatives caused an inhibition of pSTAT3 and an increase in pAKT, pERK, pJNK, and pp38. DMAS and shikonin inhibited the activation of the two master upstream regulators of the DNA damage response, ATR and ATM. MUG-Myx2b, which contains an additional PTEN mutation, was more sensitive in some targets. These data demonstrate the significant antitumorigenic effect of shikonin derivatives in MFS and highlight the importance of intra-tumor heterogeneity in treatment planning.


Assuntos
Fibrossarcoma , Naftoquinonas , Humanos , Adulto , Transdução de Sinais , Linhagem Celular Tumoral , Naftoquinonas/farmacologia , Apoptose
16.
Lab Chip ; 23(22): 4848-4859, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37860975

RESUMO

Chemotherapeutic drugs such as paclitaxel and vinblastine interact with microtubules and thus induce complex cell states of mitosis arrest at the G2/M phase followed by apoptosis dependent on drug exposure time and concentration. Microfluidic impedance cytometry (MIC), as a label-free and high-throughput technology for single-cell analysis, has been applied for viability assay of cancer cells post drug exposure at fixed time and dosage, yet verification of this technique for varied tumor cell states after anticancer drug treatment remains a challenge. Here we present a novel MIC device and for the first time perform impedance cytometry on carcinoma cells exhibiting progressive states of G2/M arrest followed by apoptosis related to drug concentration and exposure time, after treatments with paclitaxel and vinblastine, respectively. Our results from impedance cytometry reveal increased amplitude and negative phase shift at low frequency as well as higher opacity for HeLa cells under G2/M mitotic arrest compared to untreated cells. The cells under apoptosis, on the other hand, exhibit opposite changes in these electrical parameters. Therefore, the impedance features differentiate the HeLa cells under progressive states post anticancer drug treatment. We also demonstrate that vinblastine poses a more potent drug effect than paclitaxel especially at low concentrations. Our device is fabricated using a unique sacrificial layer-free soft lithography process as compared to the existing MIC device, which gives rise to readily aligned parallel microelectrodes made of silver-PDMS embedded in PDMS channel sidewalls with one molding step. Our results uncover the potential of the MIC device, with a fairly simple and low-cost fabrication process, for cellular state screening in anticancer drug therapy.


Assuntos
Antineoplásicos , Vimblastina , Humanos , Vimblastina/farmacologia , Prata/farmacologia , Células HeLa , Impedância Elétrica , Microeletrodos , Antineoplásicos/farmacologia , Mitose , Paclitaxel/farmacologia , Apoptose
17.
Bioorg Chem ; 141: 106910, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37871393

RESUMO

The present study describes synthesizing a novel series of polyfunctionalized pyridine congeners 1-18 and assessed for cytotoxic efficacies versus HCT-116, MCF-7, and HepG-2 among one non-cancerous BJ-1 human normal cell. Most compounds were precisely potent anticancer candidate drugs. The molecular impact of the most active compounds 9, 10, 11, 13, 15, and 17 was evaluated after MCF-7 treatment. The gene expression of pro- and ant-apoptosis markers P53, Bax, Caspase-3 and Bcl-2 as well as VEGFR-2 and HER2 were determined. Compounds 13 and 15 induced upregulation of pro-apoptosis of P53, Bax, Caspase-3 and downregulation of anti-apoptosis Bcl-2 gene. However, compound 15 showed higher effect compared to 13 and respective control. Moreover, a slight reduction in HER2 gene expression was detected due to compound 15 treatment, while VEGFR-2 gene was upregulated. In agreement, the immunoblotting analysis showed higher accumulation of P53, Bax, Caspase-3 proteins and of decrease the Bcl-2 protein levels. Furthermore, docking studies united with molecular dynamic simulation exposed compounds 13 and 15 fitting in the middle of the active site at the interface linking the ATP binding site and the allosteric hydrophobic binding pocket. Finally, we performed Petra/Osiris/ Molinspiration (POM) analysis for the newly synthesized compounds. The evaluation of primary in silico parameters revealed significant differences among individual polyfunctionalized pyridine compounds, highlighting the most promising candidates. These preliminary results may help in coordinating and initiating other research projects focused on polyfunctionalized pyridine compounds, especially those with predicted bioactivity, low toxicity, optimal ADME parameters, and promising perspectives.


Assuntos
Antineoplásicos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Caspase 3/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Apoptose , Antineoplásicos/farmacologia , Antineoplásicos/química , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Simulação de Dinâmica Molecular , Piridinas/farmacologia , Simulação de Acoplamento Molecular , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais
18.
Chem Biol Interact ; 386: 110777, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37879593

RESUMO

Cardiovascular diseases pose a huge threat to global human health and are also a major obstacle to drug development and disease treatment. Drug-induced cardiotoxicity remains an important clinical issue. Both traditional two-dimensional (2D) monolayer cell models and animal models have their own limitations and are not fully suitable for the study of human heart physiology or pathology. Cardiac organoids are three-dimensional (3D) and self-organized structures that accurately retain the biological characteristics and functions of heart tissue. In this study, we successfully established a human cardiac organoid model by inducing the directed differentiation of human embryonic stem cells, which recapitulates the patterns of early myocardial development. Moreover, this model accurately characterized the cardiotoxic damage caused by the anticancer drug doxorubicin, including clinical cardiac injury and cardiac function indicators, cell apoptosis, inflammation, fibrosis, as well as mitochondrial damage. In general, the cardiac organoid model can be used to evaluate the cardiotoxicity of drugs, opening new directions and ideas for drug screening and cardiotoxicity research.


Assuntos
Cardiotoxicidade , Coração , Animais , Humanos , Cardiotoxicidade/etiologia , Cardiotoxicidade/tratamento farmacológico , Doxorrubicina/toxicidade , Apoptose , Organoides , Miócitos Cardíacos
19.
Comput Biol Chem ; 107: 107953, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37673011

RESUMO

A group of theobromine derivatives was designed based on the key pharmacophoric characteristics of VEGFR-2 inhibitors. HepG2 and MCF-7 cancer cell lines were used to test the obtained compounds for their in vitro anti-proliferative activities. Compound 15 (2-(3,7-Dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-1-yl)-N-(4-(1-(2-(4-hydroxybenzoyl)hydrazono)ethyl) phenyl)acetamide) was the most potent cytotoxic member against MCF-7 (IC50 = 0.42 µM) and HepG2 (IC50 = 0.22 µM). The effectiveness of VEGFR-2 inhibition was assessed for compound 15, and its IC50 value was calculated to be 0.067 µM. Additional cellular mechanistic investigations showed that compound 15 dramatically increased the population of apoptotic HepG2 cells in both early and late apoptosis. The investigation of apoptotic markers confirmed that compound 15 upregulated the levels of BAX (2.26-fold) and downregulated the levels of Bcl-2 (4.4-fold). The molecular docking investigations, MM-GPSA, PLIP studies, and MD simulations validated the potential of compound 15 to be a VEGFR-2 inhibitor. DFT calculations have been completed to comprehend how the electrical charge is distributed within compound 15 and to predict how it would bond to VEGFR-2. Lastly, ADMET prediction showed that the designed members have drug-like characteristics and minimal levels of toxicity. In conclusion, our in vitro and in silico investigations showed that compound 15 exhibited promising apoptotic anticancer potential through the suppression of VEGFR-2.


Assuntos
Antineoplásicos , Teobromina , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células , Simulação por Computador , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases , Relação Estrutura-Atividade , Teobromina/química , Teobromina/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA