Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1293706, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646540

RESUMO

Major histocompatibility complex Class II (MHCII) proteins initiate and regulate immune responses by presentation of antigenic peptides to CD4+ T-cells and self-restriction. The interactions between MHCII and peptides determine the specificity of the immune response and are crucial in immunotherapy and cancer vaccine design. With the ever-increasing amount of MHCII-peptide binding data available, many computational approaches have been developed for MHCII-peptide interaction prediction over the last decade. There is thus an urgent need to provide an up-to-date overview and assessment of these newly developed computational methods. To benchmark the prediction performance of these methods, we constructed an independent dataset containing binding and non-binding peptides to 20 human MHCII protein allotypes from the Immune Epitope Database, covering DP, DR and DQ alleles. After collecting 11 known predictors up to January 2022, we evaluated those available through a webserver or standalone packages on this independent dataset. The benchmarking results show that MixMHC2pred and NetMHCIIpan-4.1 achieve the best performance among all predictors. In general, newly developed methods perform better than older ones due to the rapid expansion of data on which they are trained and the development of deep learning algorithms. Our manuscript not only draws a full picture of the state-of-art of MHCII-peptide binding prediction, but also guides researchers in the choice among the different predictors. More importantly, it will inspire biomedical researchers in both academia and industry for the future developments in this field.


Assuntos
Apresentação de Antígeno , Biologia Computacional , Antígenos de Histocompatibilidade Classe II , Peptídeos , Humanos , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Peptídeos/imunologia , Biologia Computacional/métodos , Ligação Proteica , Aprendizado Profundo , Algoritmos
2.
Dev Comp Immunol ; 132: 104393, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35276317

RESUMO

Natural occurrences of immunodeficiency by definition should lead to compromised immune function. The major histocompatibility complexes (MHC) are key components of the vertebrate adaptive immune system, charged with mediating allorecognition and antigen presentation functions. To this end, the genomic loss of the MHC II pathway in Syngnathus pipefishes raises questions regarding their immunological vigilance and allorecognition capabilities. Utilising allograft and autograft fin-transplants, we compared the allorecognition immune responses of two pipefish species, with (Nerophis ophidion) and without (Syngnathus typhle) a functional MHC II. Transcriptome-wide assessments explored the immunological tolerance and potential compensatory measures occupying the role of the absent MHC II. Visual observations suggested a more acute rejection response in N. ophidion allografts compared with S. typhle allografts. Differentially expressed genes involved in innate immunity, angiogenesis and tissue recovery were identified among transplantees. The intriguing upregulation of the cytotoxic T-cell implicated gzma in S. typhle allografts, suggests a prominent MHC I related response, which may compensate for the MHC II and CD4 loss. MHC I related downregulation in N. ophidion autografts hints at an immunological tolerance related reaction. These findings may indicate alternative measures evolved to cope with the MHC II genomic loss enabling the maintenance of appropriate tolerance levels. This study provides intriguing insights into the immune and tissue recovery mechanisms associated with syngnathid transplantation, and can be a useful reference for future studies focusing on transplantation transcriptomics in non-model systems.


Assuntos
Peixes , Smegmamorpha , Animais , Apresentação de Antígeno , Rejeição de Enxerto , Tolerância Imunológica , Transplante Homólogo
3.
Immunology ; 162(2): 208-219, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33010039

RESUMO

Immunogenicity risk assessment is a critical element in protein drug development. Currently, the risk assessment is most often performed using MHC-associated peptide proteomics (MAPPs) and/or T-cell activation assays. However, this is a highly costly procedure that encompasses limited sensitivity imposed by sample sizes, the MHC repertoire of the tested donor cohort and the experimental procedures applied. Recent work has suggested that these techniques could be complemented by accurate, high-throughput and cost-effective prediction of in silico models. However, this work covered a very limited set of therapeutic proteins and eluted ligand (EL) data. Here, we resolved these limitations by showcasing, in a broader setting, the versatility of in silico models for assessment of protein drug immunogenicity. A method for prediction of MHC class II antigen presentation was developed on the hereto largest available mass spectrometry (MS) HLA-DR EL data set. Using independent test sets, the performance of the method for prediction of HLA-DR antigen presentation hotspots was benchmarked. In particular, the method was showcased on a set of protein sequences including four therapeutic proteins and demonstrated to accurately predict the experimental MS hotspot regions at a significantly lower false-positive rate compared with other methods. This gain in performance was particularly pronounced when compared to the NetMHCIIpan-3.2 method trained on binding affinity data. These results suggest that in silico methods trained on MS HLA EL data can effectively and accurately be used to complement MAPPs assays for the risk assessment of protein drugs.


Assuntos
Apresentação de Antígeno/imunologia , Antígenos HLA-DR/imunologia , Proteínas/imunologia , Epitopos de Linfócito T/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Ligantes , Ativação Linfocitária/imunologia , Ligação Proteica/imunologia , Proteômica/métodos , Medição de Risco
4.
Front Immunol ; 11: 1705, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903714

RESUMO

Human Leukocyte Antigen class II (HLA-II) molecules present peptides to T lymphocytes and play an important role in adaptive immune responses. Characterizing the binding specificity of single HLA-II molecules has profound impacts for understanding cellular immunity, identifying the cause of autoimmune diseases, for immunotherapeutics, and vaccine development. Here, novel high-density peptide microarray technology combined with machine learning techniques were used to address this task at an unprecedented level of high-throughput. Microarrays with over 200,000 defined peptides were assayed with four exemplary HLA-II molecules. Machine learning was applied to mine the signals. The comparison of identified binding motifs, and power for predicting eluted ligands and CD4+ epitope datasets to that obtained using NetMHCIIpan-3.2, confirmed a high quality of the chip readout. These results suggest that the proposed microarray technology offers a novel and unique platform for large-scale unbiased interrogation of peptide binding preferences of HLA-II molecules.


Assuntos
Antígenos CD4/metabolismo , Epitopos de Linfócito T/metabolismo , Antígenos HLA/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Aprendizado de Máquina , Análise Serial de Proteínas , Apresentação de Antígeno , Sítios de Ligação , Antígenos CD4/imunologia , Bases de Dados de Proteínas , Epitopos de Linfócito T/imunologia , Antígenos HLA/imunologia , Ensaios de Triagem em Larga Escala , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Ligantes , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas
5.
MAbs ; 12(1): 1764829, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32370596

RESUMO

Biologics have the potential to induce an immune response when used therapeutically. A number of in vitro assays are currently used preclinically to predict the risk of immunogenicity, but the validation of these preclinical tools suffers from the relatively small number of accessible immunogenic molecules and the limited understanding of the mechanisms underlying the immunogenicity of biologics. Here, we present the post-hoc analysis of three monoclonal antibodies with high immunogenicity in the clinic. Two of the three antibodies elicited a CD4 T cell proliferative response in multiple donors in a peripheral blood mononuclear cell assay, but required different experimental conditions to induce these responses. The third antibody did not trigger any T cell response in this assay. These distinct capacities to promote CD4 T cell responses in vitro were mirrored by different capacities to stimulate innate immune cells. Only one of the three antibodies was capable of inducing human dendritic cell (DC) maturation; the second antibody promoted monocyte activation while the third one did not induce any innate cell activation in vitro. All three antibodies exhibited a moderate to high internalization by human DCs and MHC-associated peptide proteomics analysis revealed the presence of potential T cell epitopes that were confirmed by a T-cell proliferation assay. Collectively, these findings highlight the existence of distinct immune stimulatory mechanisms for immunogenic antibodies. These findings have implications for the preclinical immunogenicity risk assessment of biologics.


Assuntos
Anticorpos Monoclonais/imunologia , Formação de Anticorpos/imunologia , Apresentação de Antígeno/imunologia , Linfócitos T CD4-Positivos/imunologia , Células Dendríticas/imunologia , Ativação Linfocitária/imunologia , Anticorpos Monoclonais/farmacologia , Formação de Anticorpos/efeitos dos fármacos , Apresentação de Antígeno/efeitos dos fármacos , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células Dendríticas/efeitos dos fármacos , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Ativação Linfocitária/efeitos dos fármacos
6.
PLoS One ; 15(3): e0229660, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32191728

RESUMO

Respiratory syncytial virus (RSV) is the single most important cause of serious lower respiratory tract disease in infants and young children worldwide and a high priority for vaccine development. Despite over 50 years of research, however, no vaccine is yet available. One block to vaccine development is an incomplete understanding of the aberrant memory response to the formalin-inactivated RSV vaccine (FI-RSV) given to children in the 1960s. This vaccine caused enhanced respiratory disease (ERD) with later natural RSV infection. Concern that any non-live virus vaccine may also cause ERD has blocked development of subunit vaccines for young children. A number of animal FI-RSV studies suggest various immune mechanisms behind ERD. However, other than limited data from the original FI-RSV trial, there is no information on the human ERD-associated responses. An in vitro model with human blood specimens may shed light on the immune memory responses likely responsible for ERD. Memory T cell responses to an antigen are guided by the innate responses, particularly dendritic cells that present an antigen in conjunction with co-stimulatory molecules and cytokine signaling. Our in vitro model involves human monocyte derived dendritic cells (moDC) and allogenic T cell cultures to assess innate responses that direct T cell responses. Using this model, we evaluated human responses to live RSV, FI-RSV, and subunit RSV G vaccines (G-containing virus-like particles, G-VLP). Similar to findings in animal studies, FI-RSV induced prominent Th2/Th17-biased responses with deficient type-1 responses compared to live virus. Responses to G-VLPs were similar to live virus, i.e. biased towards a Th1 and not a Th2/Th17. Also mutating CX3C motif in G gave a more pronounced moDC responses associated with type-1 T cell responses. This in vitro model identifies human immune responses likely associated with ERD and provides another pre-clinical tool to assess the safety of RSV vaccines.


Assuntos
Vacinas contra Vírus Sincicial Respiratório/efeitos adversos , Vacinas contra Vírus Sincicial Respiratório/imunologia , Animais , Apresentação de Antígeno , Antígenos Virais/imunologia , Pré-Escolar , Células Dendríticas/imunologia , Células Dendríticas/virologia , Humanos , Imunidade Inata , Memória Imunológica , Técnicas In Vitro , Lactente , Modelos Imunológicos , Infecções por Vírus Respiratório Sincicial/etiologia , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vírus Sincicial Respiratório Humano/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/virologia , Vacinas de Subunidades Antigênicas/efeitos adversos , Vacinas de Subunidades Antigênicas/imunologia
7.
Methods Enzymol ; 632: 417-430, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32000908

RESUMO

APCs play a key role at initiating adaptive immune responses by presenting antigens to lymphocytes and DCs are professional APCs. It is critical to understand the differential antigen capture and presentation ability of different DC subsets, which is important for DC-targeted immunotherapy. In this section, we give a brief introduction to different antigen presentation pathways and introduce the key concept of cross-presentation, the major antigen presentation pathway used for anti-viral and anti-tumoral immune responses. CD205, a DC restricted receptor, is highly expressed on certain DCs subsets. We find CD205-mediated antigen uptake to be a useful model for studying antigen uptake and defects. These methods provide an introduction to CD205-mediated pre-clinical delivery of antigens to cross-presenting DCs, which can be adapted to the study of targeting to multiple receptors and other C-type lectins. This is a promising strategy to detect the antigen capture capacity and to study the key players orchestrating tolerance and immunity ex vivo.


Assuntos
Anticorpos/imunologia , Apresentação de Antígeno , Células Dendríticas/imunologia , Imunidade Adaptativa , Animais , Antígenos CD/imunologia , Apresentação Cruzada , Endocitose , Humanos , Lectinas Tipo C/imunologia , Camundongos , Antígenos de Histocompatibilidade Menor/imunologia , Receptores de Superfície Celular/imunologia
8.
Fish Shellfish Immunol ; 98: 788-799, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31740400

RESUMO

A skin fibroblast cell line WE-skin11f from walleye (Sander vitreus) was used to study the impact of temperature (26 °C, 20 °C, 14 °C, or 4 °C) on the transcript levels of genes involved in the endogenous antigen processing and presentation pathway (EAPP), which is an important antiviral pathway of vertebrates. Partial coding sequences were found for 4 previously unidentified walleye EAPP members, calreticulin, calnexin, erp57, and tapasin, and the constitutive transcript levels of these genes in WE-skin11f was unchanged by culture incubation temperature. The viral mimic poly (I:C) and viral haemorrhagic septicaemia virus (VHSV) IVb were used to study possible induction of EAPP transcripts (b2m, mhIa, and tapasin). The walleye cells were exquisitely sensitive to poly (I:C), losing adherence and viability at concentrations greater than 100 ng/mL, particularly at suboptimal temperatures. VHSV IVb viral particles were produced from infected WE-skin11f cells at 20 °C, 14 °C, and 4 °C but with much lower production at 4 °C. Under conditions where their impact on the viability of WE-skin11f cultures was slight, poly (I:C) and VHSV IVb were shown to induce b2m, mhIa, and tapasin transcript°s at 26 °C and 20 °C respectively. However, at 4 °C, the up-regulation of EAPP transcript levels was either delayed or completely impaired when compared to the 26 °C and 20 °C control temperatures of the respective experiments. These in vitro results suggest that suboptimal temperatures may be capable of modulating the regulation of the EAPP in walleye cells during viral infection.


Assuntos
Apresentação de Antígeno/genética , Proteínas de Peixes/imunologia , Percas/imunologia , Animais , Linhagem Celular , Fibroblastos , Novirhabdovirus/fisiologia , Percas/genética , Poli I-C/farmacologia , Temperatura , Transcrição Gênica
9.
Dev Comp Immunol ; 100: 103423, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31254564

RESUMO

Rainbow trout (Oncorhynchus mykiss) face low environmental temperatures over winter months and during extreme low temperature events. Suboptimal temperatures are known to negatively impact the teleost immune system, although there is mixed evidence in rainbow trout as to the effect on the endogenous antigen processing and presentation pathway (EAPP). The EAPP is an important pathway for antiviral defense that involves the presentation of endogenous peptides on the cell surface for recognition by cytotoxic T cells. Using a rainbow trout hypodermal fibroblast (RTHDF) cell line as an in vitro model, we determined that constitutive EAPP transcript levels are not impaired at low temperature, but induction of up-regulation of these transcripts is delayed at the suboptimal temperature following exposure to poly(I:C) or viral haemorrhagic septicaemia virus IVb, which was still able to enter and replicate in the cell line at 4 °C, albeit with reduced efficiency. The delay in the induction of EAPP mRNA level up-regulation following poly(I:C) stimulation coincided with a delay in ifn1 transcript levels and secretion, which is important since interferon-stimulated response elements were identified in the promoter regions of the EAPP-specific members of the pathway, implying that IFN1 is involved in the regulation of these genes. Our results suggest that the ability of rainbow trout to mount an effective immune response to viral pathogens may be lessened at suboptimal temperatures.


Assuntos
Temperatura Baixa/efeitos adversos , Fibroblastos/imunologia , Doenças dos Peixes/imunologia , Proteínas de Peixes/metabolismo , Oncorhynchus mykiss/imunologia , Aclimatação/imunologia , Animais , Apresentação de Antígeno , Linhagem Celular , Fibroblastos/metabolismo , Doenças dos Peixes/virologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Indutores de Interferon/farmacologia , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Novirhabdovirus/imunologia , Oncorhynchus mykiss/virologia , Poli I-C/farmacologia , Regiões Promotoras Genéticas/genética , RNA Mensageiro/metabolismo , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/imunologia
10.
Front Immunol ; 9: 2284, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30364159

RESUMO

Alloreactivity compromising clinical outcomes in stem cell transplantation is observed despite HLA matching of donors and recipients. This has its origin in the variation between the exomes of the two, which provides the basis for minor histocompatibility antigens (mHA). The mHA presented on the HLA class I and II molecules and the ensuing T cell response to these antigens results in graft vs. host disease. In this paper, results of a whole exome sequencing study are presented, with resulting alloreactive polymorphic peptides and their HLA class I and HLA class II (DRB1) binding affinity quantified. Large libraries of potentially alloreactive recipient peptides binding both sets of molecules were identified, with HLA-DRB1 generally presenting a greater number of peptides. These results are used to develop a quantitative framework to understand the immunobiology of transplantation. A tensor-based approach is used to derive the equations needed to determine the alloreactive donor T cell response from the mHA-HLA binding affinity and protein expression data. This approach may be used in future studies to simulate the magnitude of expected donor T cell response and determine the risk for alloreactive complications in HLA matched or mismatched hematopoietic cell and solid organ transplantation.


Assuntos
Antígenos/imunologia , Transplante de Células-Tronco , Linfócitos T/imunologia , Linfócitos T/metabolismo , Algoritmos , Apresentação de Antígeno/imunologia , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Doença Enxerto-Hospedeiro/etiologia , Antígenos HLA/imunologia , Histocompatibilidade/genética , Histocompatibilidade/imunologia , Humanos , Isoantígenos/química , Isoantígenos/imunologia , Isoantígenos/metabolismo , Modelos Teóricos , Peptídeos/imunologia , Peptídeos/metabolismo , Ligação Proteica , Transplante de Células-Tronco/efeitos adversos , Doadores de Tecidos
11.
Microb Cell Fact ; 17(1): 17, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29402276

RESUMO

BACKGROUND: Chimeric virus-like particles (VLP) allow the display of foreign antigens on their surface and have proved valuable in the development of safe subunit vaccines or drug delivery. However, finding an inexpensive production system and a VLP scaffold that allows stable incorporation of diverse, large foreign antigens are major challenges in this field. RESULTS: In this study, a versatile and cost-effective platform for chimeric VLP development was established. The membrane integral small surface protein (dS) of the duck hepatitis B virus was chosen as VLP scaffold and the industrially applied and safe yeast Hansenula polymorpha (syn. Pichia angusta, Ogataea polymorpha) as the heterologous expression host. Eight different, large molecular weight antigens of up to 412 amino acids derived from four animal-infecting viruses were genetically fused to the dS and recombinant production strains were isolated. In all cases, the fusion protein was well expressed and upon co-production with dS, chimeric VLP containing both proteins could be generated. Purification was accomplished by a downstream process adapted from the production of a recombinant hepatitis B VLP vaccine. Chimeric VLP were up to 95% pure on protein level and contained up to 33% fusion protein. Immunological data supported surface exposure of the foreign antigens on the native VLP. Approximately 40 mg of chimeric VLP per 100 g dry cell weight could be isolated. This is highly comparable to values reported for the optimized production of human hepatitis B VLP. Purified chimeric VLP were shown to be essentially stable for 6 months at 4 °C. CONCLUSIONS: The dS-based VLP scaffold tolerates the incorporation of a variety of large molecular weight foreign protein sequences. It is applicable for the display of highly immunogenic antigens originating from a variety of pathogens. The yeast-based production system allows cost-effective production that is not limited to small-scale fundamental research. Thus, the dS-based VLP platform is highly efficient for antigen presentation and should be considered in the development of future vaccines.


Assuntos
Apresentação de Antígeno , Pichia/genética , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/isolamento & purificação , Animais , Patos , Hepatite B/imunologia , Antígenos de Superfície da Hepatite B/imunologia , Vírus da Hepatite B do Pato/imunologia , Humanos , Pichia/imunologia , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/isolamento & purificação , Vacinas Sintéticas/economia , Vacinas Sintéticas/imunologia , Vacinas de Partículas Semelhantes a Vírus/análise , Vacinas de Partículas Semelhantes a Vírus/genética
12.
Vaccine ; 36(22): 3064-3071, 2018 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27894719

RESUMO

Highly pathogenic avian influenza (HPAI) viruses cause a severe and lethal infection in domestic birds. The increasing number of HPAI outbreaks has demonstrated the lack of capabilities to control the rapid spread of avian influenza. Poultry vaccination has been shown to not only reduce the virus spread in animals but also reduce the virus transmission to humans, preventing potential pandemic development. However, existing vaccine technologies cannot respond to a new virus outbreak rapidly and at a cost and scale that is commercially viable for poultry vaccination. Here, we developed modular capsomere, subunits of virus-like particle, as a low-cost poultry influenza vaccine. Modified murine polyomavirus (MuPyV) VP1 capsomere was used to present structural-based influenza Hemagglutinin (HA1) antigen. Six constructs of modular capsomeres presenting three truncated versions of HA1 and two constructs of modular capsomeres presenting non-modified HA1 have been generated. These modular capsomeres were successfully produced in stable forms using Escherichia coli, without the need for protein refolding. Based on ELISA, this adjuvanted modular capsomere (CaptHA1-3C) induced strong antibody response (almost 105endpoint titre) when administered into chickens, similar to titres obtained in the group administered with insect cell-based HA1 proteins. Chickens that received adjuvanted CaptHA1-3C followed by challenge with HPAI virus were fully protected. The results presented here indicate that this platform for bacterially-produced modular capsomere could potentially translate into a rapid-response and low-cost vaccine manufacturing technology suitable for poultry vaccination.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vacinas contra Influenza/imunologia , Influenza Aviária/prevenção & controle , Vacinas de Partículas Semelhantes a Vírus/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticorpos Antivirais/sangue , Apresentação de Antígeno , Galinhas/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Vacinas contra Influenza/economia , Vacinas contra Influenza/genética , Polyomavirus , Aves Domésticas , Vacinação , Vacinas de Partículas Semelhantes a Vírus/economia , Vacinas de Partículas Semelhantes a Vírus/genética
13.
Nutrients ; 9(7)2017 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-28708104

RESUMO

Epidemiological evidence strongly suggests that fruit consumption promotes many health benefits. Despite the general consensus that fruit and juice are nutritionally similar, epidemiological results for juice consumption are conflicting. Our objective was to use DNA methylation marks to characterize fruit and juice epigenetic signatures within PBMCs and identify shared and independent signatures associated with these groups. Genome-wide DNA methylation marks (Illumina Human Methylation 450k chip) for 2,148 individuals that participated in the Framingham Offspring exam 8 were analyzed for correlations between fruit or juice consumption using standard linear regression. CpG sites with low P-values (P < 0.01) were characterized using Gene Set Enrichment Analysis (GSEA), Ingenuity Pathway Analysis (IPA), and epigenetic Functional element Overlap analysis of the Results of Genome Wide Association Study Experiments (eFORGE). Fruit and juice-specific low P-value epigenetic signatures were largely independent. Genes near the fruit-specific epigenetic signature were enriched among pathways associated with antigen presentation and chromosome or telomere maintenance, while the juice-specific epigenetic signature was enriched for proinflammatory pathways. IPA and eFORGE analyses implicate fruit and juice-specific epigenetic signatures in the modulation of macrophage (fruit) and B or T cell (juice) activities. These data suggest a role for epigenetic regulation in fruit and juice-specific health benefits and demonstrate independent associations with distinct immune functions and cell types, suggesting that these groups may not confer the same health benefits. Identification of such differences between foods is the first step toward personalized nutrition and ultimately the improvement of human health and longevity.


Assuntos
Bebidas/análise , Epigênese Genética/genética , Epigênese Genética/imunologia , Frutas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Apresentação de Antígeno , DNA/sangue , Metilação de DNA , Dieta , Feminino , Frutas/química , Frutas/imunologia , Genes de Plantas , Marcadores Genéticos , Promoção da Saúde , Humanos , Inflamação , Masculino , Pessoa de Meia-Idade , Valor Nutritivo , Homeostase do Telômero
14.
Tumour Biol ; 37(5): 6953-62, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26662806

RESUMO

Breast cancer is the most common cancer in women worldwide. In this study, we correlated the serum level of major histocompatibility complex class I-related chain A (sMICA) with expression and presentation of NKG2D receptors on NK cells among patients with breast cancer. Peripheral blood (PB) samples were collected from 49 healthy and 49 breast cancer patients before surgery and chemotherapy. The expression and presentation of NKG2D were assessed using qRT-PCR and flow cytometry, respectively. Furthermore, sMICA levels were determined using ELISA. In flow cytometry, whole blood samples were stained with anti-CD56/NKG2D/CD3 and the obtained results were analyzed using WinMDI software. In addition, SPSS software was used for statistical analysis of data. Significantly higher levels sMICA were detected in the sera of the majority of cancer patients in contrast to healthy volunteers (P < 0.001). The expression and presentation of NKG2D receptor were significantly lower than those in healthy persons, and with an inverse correlation to sMICA and positively correlated with tumor stage. Our study showed that sMICA may have an important role in diminishing the expression and presentation of NKG2D receptor in breast cancer patients and proposes the notion that sMICA can be a target candidate for treatment of breast cancer.


Assuntos
Apresentação de Antígeno , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Expressão Gênica , Antígenos de Histocompatibilidade Classe I/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Adulto , Idoso , Neoplasias da Mama/patologia , Feminino , Citometria de Fluxo , Antígenos de Histocompatibilidade Classe I/sangue , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Pessoa de Meia-Idade , Gradação de Tumores , Metástase Neoplásica , Estadiamento de Neoplasias , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
15.
PLoS One ; 10(3): e0121923, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25815476

RESUMO

Research addressing the in vivo effects of T cell activation by lipids, glycolipids, and lipopeptides is hampered by the absence of a suitable animal model. Mice and rats do not express CD1a, CD1b, and CD1c molecules that present pathogen-derived lipid antigens in humans. In cattle, two CD1A and three CD1B genes are transcribed. The proteins encoded by these genes differ in their antigen binding domains and in their cytoplasmic tails, suggesting that they may traffic differently in the cell and thus have access to different antigens. In the current study, we describe the genomic organization of the bovine CD1 locus and transcription of bovine CD1 genes in freshly isolated dendritic cells and B cells from different tissues. After determining the specificity of previously only partly characterized anti-CD1 antibodies by testing recombinant single chain bovine CD1 proteins and CD1-transfected cells, we were able to determine cell surface protein expression on freshly isolated cells. Our study suggests that CD1b1 and CD1b3 are more broadly expressed than CD1b5, and CD1a2 is more broadly expressed than CD1a1. Pseudoafferent lymph dendritic cells express CD1B genes, but no transcription is detected in lymph nodes. Even though B cells transcribe CD1B genes, there is no evidence of protein expression at the cell surface. Thus, patterns of CD1 protein expression are largely conserved among species.


Assuntos
Anticorpos Monoclonais/metabolismo , Antígenos CD1/genética , Antígenos CD1/metabolismo , Linfócitos B/metabolismo , Células Dendríticas/metabolismo , Sequência de Aminoácidos , Animais , Apresentação de Antígeno , Antígenos CD1/imunologia , Antígenos de Superfície/genética , Antígenos de Superfície/imunologia , Antígenos de Superfície/metabolismo , Linfócitos B/citologia , Bovinos , Células Cultivadas , Clonagem Molecular , Sequência Conservada , Células Dendríticas/citologia
17.
Influenza Other Respir Viruses ; 6(2): 119-26, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21819548

RESUMO

PURPOSE: The main purpose of vaccination is to generate immunological memory providing enhanced immune responses against infectious pathogens. The standard and most commonly used assay for influenza vaccine immunogenicity evaluation is a hemagglutination inhibition assay (HAI). It is clear now that HAI assay is unable to properly assess the proven protective immunity elicited by live attenuated influenza vaccines (LAIV). New methods need to be developed for more accurate LAIV immunogenicity assessment and prediction of vaccine efficacy among target populations. OBJECTIVE: Randomized placebo-controlled study of memory B- and T-cell responses to intranasal LAIV in young adults. METHODS: A total of 56 healthy young adults 18-20 years old received seasonal monovalent LAIV. Mucosal memory B-cell responses were measured by IgA avidity assessment in nasal swabs. CD4 memory T cells in peripheral blood were examined by the expression of CD45RO marker and in functional test by the ability of virus-specific T cells to maintain the trogocytosis with antigen-loaded target cells. RESULTS: Intranasal LAIV immunization enhances mucosal IgA avidity even without reliable increases in antibody titers. At the day 21 after vaccination, up to 40% of subjects demonstrated significant increases in both total and virus-specific CD4 memory T cells that were observed regardless of seroconversion rate measured by HAI assay. CONCLUSION: The data suggest that immunogenicity of LAIV vaccines should be evaluated on the mucosal and cellular immunity basis. The assays applied could be used to support influenza clinical trials through preliminary screening of volunteers and subsequent measurement of anti-influenza in immunity.


Assuntos
Apresentação de Antígeno , Linfócitos B/imunologia , Memória Imunológica , Vacinas contra Influenza/imunologia , Orthomyxoviridae/imunologia , Vírus Reordenados/imunologia , Linfócitos T/imunologia , Administração Intranasal , Adolescente , Anticorpos Antivirais/imunologia , Afinidade de Anticorpos , Antígenos CD4/análise , Experimentação Humana , Humanos , Imunidade nas Mucosas , Imunoglobulina A/imunologia , Vacinas contra Influenza/administração & dosagem , Antígenos Comuns de Leucócito/análise , Placebos/administração & dosagem , Subpopulações de Linfócitos T/química , Subpopulações de Linfócitos T/imunologia , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Adulto Jovem
18.
J Vis Exp ; (48)2011 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-21339714

RESUMO

Natural killer (NK) cells play an important role in immune surveillance against a variety of infectious microorganisms and tumors. Limited availability of NK cells and ability to expand in vitro has restricted development of NK cell immunotherapy. Here we describe a method to efficiently expand vast quantities of functional NK cells ex vivo using K562 cells expressing membrane-bound IL21, as an artificial antigen-presenting cell (aAPC). NK cell adoptive therapies to date have utilized a cell product obtained by steady-state leukapheresis of the donor followed by depletion of T cells or positive selection of NK cells. The product is usually activated in IL-2 overnight and then administered the following day. Because of the low frequency of NK cells in peripheral blood, relatively small numbers of NK cells have been delivered in clinical trials. The inability to propagate NK cells in vitro has been the limiting factor for generating sufficient cell numbers for optimal clinical outcome. Some expansion of NK cells (5-10 fold over 1-2 weeks) has be achieved through high-dose IL-2 alone. Activation of autologous T cells can mediate NK cell expansion, presumably also through release of local cytokine. Support with mesenchymal stroma or artificial antigen presenting cells (aAPCs) can support the expansion of NK cells from both peripheral blood and cord blood. Combined NKp46 and CD2 activation by antibody-coated beads is currently marketed for NK cell expansion (Miltenyi Biotec, Auburn CA), resulting in approximately 100-fold expansion in 21 days. Clinical trials using aAPC-expanded or -activated NK cells are underway, one using leukemic cell line CTV-1 to prime and activate NK cells without significant expansion. A second trial utilizes EBV-LCL for NK cell expansion, achieving a mean 490-fold expansion in 21 days. The third utilizes a K562-based aAPC transduced with 4-1BBL (CD137L) and membrane-bound IL-15 (mIL-15), which achieved a mean NK expansion 277-fold in 21 days. Although, the NK cells expanded using K562-41BBL-mIL15 aAPC are highly cytotoxic in vitro and in vivo compared to unexpanded NK cells, and participate in ADCC, their proliferation is limited by senescence attributed to telomere shortening. More recently a 350-fold expansion of NK cells was reported using K562 expressing MICA, 4-1BBL and IL15. Our method of NK cell expansion described herein produces rapid proliferation of NK cells without senescence achieving a median 21,000-fold expansion in 21 days.


Assuntos
Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Apresentação de Antígeno , Humanos , Imunoterapia Adotiva , Células K562 , Ativação Linfocitária
19.
Semin Immunol ; 23(1): 12-20, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21269839

RESUMO

During the past decade, the immunotherapeutic potential of ex vivo generated professional antigen presenting dendritic cells (DCs) has been explored in the clinic. Albeit safe, clinical results have thus far been limited. A major disadvantage of current cell-based dendritic cell (DC) therapies, preventing universal implementation of this form of immunotherapy, is the requirement that vaccines need to be tailor made for each individual. Targeted delivery of antigens to DC surface receptors in vivo would circumvent this laborious and expensive ex vivo culturing steps involved with these cell-based therapies. In addition, the opportunity to target natural and often rare DC subsets in vivo might have advantages over loading more artificial ex vivo cultured DCs. Preclinical studies show targeting antigens to DCs effectively induces humoral responses, while cellular responses are induced provided a DC maturation or activation stimulus is co-administered. Here, we discuss strategies to target antigens to distinct DC subsets and to simultaneously employ adjuvants to activate these cells to induce immunity.


Assuntos
Antígenos/imunologia , Células Dendríticas/imunologia , Vacinas/economia , Vacinas/imunologia , Adjuvantes Imunológicos , Animais , Apresentação de Antígeno/imunologia , Humanos , Receptores de Superfície Celular/imunologia , Receptores de Superfície Celular/metabolismo
20.
Clin Exp Immunol ; 160(2): 176-84, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20629979

RESUMO

Like many other complex human disorders of unknown aetiology, autoimmune-mediated type 1 diabetes may ultimately be controlled via a therapeutic approach that combines multiple agents, each with differing modes of action. The numerous advantages of such a strategy include the ability to minimize toxicities and realize synergies to enhance and prolong efficacy. The recognition that combinations might offer far-reaching benefits, at a time when few single agents have yet proved themselves in well-powered trials, represents a significant challenge to our ability to conceive and implement rational treatment designs. As a first step in this process, the Immune Tolerance Network, in collaboration with the Juvenile Diabetes Research Foundation, convened a Type 1 Diabetes Combination Therapy Assessment Group, the recommendations of which are discussed in this Perspective paper.


Assuntos
Diabetes Mellitus Tipo 1/terapia , Aprovação de Drogas , Desenho de Fármacos , Imunoterapia/métodos , Animais , Apresentação de Antígeno/efeitos dos fármacos , Apresentação de Antígeno/imunologia , Autoanticorpos/biossíntese , Autoanticorpos/imunologia , Protocolos Clínicos/normas , Ensaios Clínicos como Assunto , Terapia Combinada , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/imunologia , Aprovação de Drogas/legislação & jurisprudência , Avaliação Pré-Clínica de Medicamentos , Quimioterapia Combinada , Drogas em Investigação/uso terapêutico , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Fatores Imunológicos/farmacologia , Fatores Imunológicos/uso terapêutico , Imunossupressores/farmacologia , Imunossupressores/uso terapêutico , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/patologia , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Subpopulações de Linfócitos/efeitos dos fármacos , Subpopulações de Linfócitos/imunologia , Camundongos , Camundongos Endogâmicos NOD , Estados Unidos , United States Food and Drug Administration
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA