Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 340
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732123

RESUMO

The pine wood nematode (PWN) uses several Monochamus species as vehicles, through a temporary hitchhiking process known as phoresy, enabling it to access new host plant resources. Monochamus saltuarius acts as a new and major vector of the PWN in Northeastern China, showing lower PWN carrying capacity and a shorter transmission cycle compared to established vectors. The apparently altered symbiotic relationship offers an interesting area for researching the costs and adaptions involved in nematode-beetle, a specialized phoresy. We analyzed the response and fitness costs of M. saltuarius through physiological measurements and transcriptomics. The PWN exerted adverse repercussions on the growth and development of M. saltuarius. The PWN accelerated larval development into pupae, while beetle adults carrying the PWN exhibited an elevated abnormality rate and mortality, and reduced starvation resistance. During the pupal stage, the expression of growth-related genes, including ecdysone-inducible genes (E74EA), cuticle proteins, and chitin genes (CHTs), markedly increased. Meanwhile, the induced immune response, mainly by the IMD and Toll signaling pathways, could be a contributing factor to adult abnormality and mortality. Adult gonads and trachea exhibited enrichment in pathways related to fatty acid elongation, biosynthesis, and metabolism. FASN, ELOVL, and SCD possibly contributed to resistance against PWN. Our research indicated that phoretic interactions between vector beetles and PWN vary throughout the vector's lifespan, particularly before and after entry into the trachea. This study highlighted the fitness costs of immunity and metabolism on the vector beetle, indicating the adaptation mechanisms and evolutionary trade-offs to PWN.


Assuntos
Besouros , Transcriptoma , Animais , Besouros/fisiologia , Besouros/genética , Tylenchida/fisiologia , Tylenchida/genética , Tylenchida/patogenicidade , Perfilação da Expressão Gênica/métodos , Larva , Interações Hospedeiro-Parasita/genética , Aptidão Genética
2.
Microbiol Spectr ; 12(5): e0420623, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38534122

RESUMO

Plasmids are the primary vectors of horizontal transfer of antibiotic resistance genes among bacteria. Previous studies have shown that the spread and maintenance of plasmids among bacterial populations depend on the genetic makeup of both the plasmid and the host bacterium. Antibiotic resistance can also be acquired through mutations in the bacterial chromosome, which not only confer resistance but also result in changes in bacterial physiology and typically a reduction in fitness. However, it is unclear whether chromosomal resistance mutations affect the interaction between plasmids and the host bacteria. To address this question, we introduced 13 clinical plasmids into a susceptible Escherichia coli strain and three different congenic mutants that were resistant to nitrofurantoin (ΔnfsAB), ciprofloxacin (gyrA, S83L), and streptomycin (rpsL, K42N) and determined how the plasmids affected the exponential growth rates of the host in glucose minimal media. We find that though plasmids confer costs on the susceptible strains, those costs are fully mitigated in the three resistant mutants. In several cases, this results in a competitive advantage of the resistant strains over the susceptible strain when both carry the same plasmid and are grown in the absence of antibiotics. Our results suggest that bacteria carrying chromosomal mutations for antibiotic resistance could be a better reservoir for resistance plasmids, thereby driving the evolution of multi-drug resistance.IMPORTANCEPlasmids have led to the rampant spread of antibiotic resistance genes globally. Plasmids often carry antibiotic resistance genes and other genes needed for its maintenance and spread, which typically confer a fitness cost on the host cell observed as a reduced growth rate. Resistance is also acquired via chromosomal mutations, and similar to plasmids they also reduce bacterial fitness. However, we do not know whether resistance mutations affect the bacterial ability to carry plasmids. Here, we introduced 13 multi-resistant clinical plasmids into a susceptible and three different resistant E. coli strains and found that most of these plasmids do confer fitness cost on susceptible cells, but these costs disappear in the resistant strains which often lead to fitness advantage for the resistant strains in the absence of antibiotic selection. Our results imply that already resistant bacteria are a more favorable reservoir for multi-resistant plasmids, promoting the ascendance of multi-resistant bacteria.


Assuntos
Antibacterianos , Cromossomos Bacterianos , Farmacorresistência Bacteriana Múltipla , Escherichia coli , Mutação , Plasmídeos , Plasmídeos/genética , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Antibacterianos/farmacologia , Cromossomos Bacterianos/genética , Farmacorresistência Bacteriana Múltipla/genética , Testes de Sensibilidade Microbiana , Aptidão Genética , Ciprofloxacina/farmacologia , Humanos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Farmacorresistência Bacteriana/genética , Estreptomicina/farmacologia
3.
Evolution ; 78(5): 1005-1013, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38416416

RESUMO

Behavioral avoidance of parasites is a widespread strategy among animal hosts and in human public health. Avoidance has repercussions for both individual and population-level infection risk. Although most cases of parasite avoidance are viewed as adaptive, there is little evidence that the basic assumptions of evolution by natural selection are met. This study addresses this gap by testing whether there is a heritable variation in parasite avoidance behavior. We quantified behavioral avoidance of the bacterial parasite Serratia marcescens for 12 strains of the nematode host Caenorhabditis elegans. We found that these strains varied in their magnitude of avoidance, and we estimated the broad-sense heritability of this behavior to be in the range of 11%-26%. We then asked whether avoidance carries a constitutive fitness cost. We did not find evidence of one. Rather, strains with higher avoidance had higher fitness, measured as population growth rate. Together, these results direct future theoretical and empirical work to identify the forces maintaining genetic variation in parasite avoidance.


Assuntos
Caenorhabditis elegans , Aptidão Genética , Variação Genética , Serratia marcescens , Animais , Serratia marcescens/genética , Serratia marcescens/fisiologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Interações Hospedeiro-Parasita , Aprendizagem da Esquiva
4.
Appl Environ Microbiol ; 90(2): e0141923, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38299817

RESUMO

In this article, we present a method for designing, executing, and analyzing data from a microbial competition experiment. We use fluorescent reporters to label different competing strains and resolve individual growth curves using a fluorescent spectrophotometer. Our comprehensive data analysis pipeline integrates multiple experiments to simultaneously infer sources of variation, extract selection coefficients, and estimate the genetic contributions to fitness for various synthetic genetic cassettes (SGCs). To demonstrate the method, we employ a synthetic biological system based on Escherichia coli. Strains carry 1 of 10 different plasmids and one of three genomically integrated fluorescent markers. All strains are co-cultured to obtain real-time measurements of optical density (total population density) and fluorescence (sub-population densities). We identify challenges in calibrating between fluorescence and density and of fluorescent proteins maturing at different rates. To resolve these issues, we compare two methods of fluorescence calibration and correct for maturation by measuring in vivo maturation times. We provide evidence of genetic interactions occurring between our SGCs and further show how to use our statistical model to test some hypotheses about microbial growth and the costs of protein expression.IMPORTANCEFluorescently labeled co-cultures are becoming increasingly popular. The approach proposed here offers a high standard for experimental design and data analysis to measure selection coefficients and growth rates in competition. Measuring competitive differences is useful in many laboratory studies, allowing for fitness cost-correction of growth rates and ecological interactions and testing hypotheses in synthetic biology. Using time-resolved growth curves, rather than endpoint measurements, for competition assays allows us to construct a detailed scientific model that can be used to ask questions about fine-grained phenomena, such as bacterial growth dynamics, as well as higher-level phenomena, such as the interactions between synthetic cassette expression.


Assuntos
Aptidão Genética , Modelos Teóricos , Espectrofotometria
5.
J Virol ; 97(10): e0116223, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37800949

RESUMO

IMPORTANCE: Previously, we modeled direct transmission chains of Zika virus (ZIKV) by serially passaging ZIKV in mice and mosquitoes and found that direct mouse transmission chains selected for viruses with increased virulence in mice and the acquisition of non-synonymous amino acid substitutions. Here, we show that these same mouse-passaged viruses also maintain fitness and transmission capacity in mosquitoes. We used infectious clone-derived viruses to demonstrate that the substitution in nonstructural protein 4A contributes to increased virulence in mice.


Assuntos
Culicidae , Aptidão Genética , Mosquitos Vetores , Virulência , Zika virus , Animais , Camundongos , Culicidae/virologia , Mosquitos Vetores/virologia , Virulência/genética , Zika virus/química , Zika virus/genética , Zika virus/patogenicidade , Infecção por Zika virus/transmissão , Infecção por Zika virus/virologia , Inoculações Seriadas , Substituição de Aminoácidos , Aptidão Genética/genética
6.
Proc Biol Sci ; 290(2006): 20231033, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37670582

RESUMO

Phenotypic plasticity and evolutionary adaptation allow populations to cope with global change, but limits and costs to adaptation under multiple stressors are insufficiently understood. We reared a foundational copepod species, Acartia hudsonica, under ambient (AM), ocean warming (OW), ocean acidification (OA), and combined ocean warming and acidification (OWA) conditions for 11 generations (approx. 1 year) and measured population fitness (net reproductive rate) derived from six life-history traits (egg production, hatching success, survival, development time, body size and sex ratio). Copepods under OW and OWA exhibited an initial approximately 40% fitness decline relative to AM, but fully recovered within four generations, consistent with an adaptive response and demonstrating synergy between stressors. At generation 11, however, fitness was approximately 24% lower for OWA compared with the AM lineage, consistent with the cost of producing OWA-adapted phenotypes. Fitness of the OWA lineage was not affected by reversal to AM or low food environments, indicating sustained phenotypic plasticity. These results mimic those of a congener, Acartia tonsa, while additionally suggesting that synergistic effects of simultaneous stressors exert costs that limit fitness recovery but can sustain plasticity. Thus, even when closely related species experience similar stressors, species-specific costs shape their unique adaptive responses.


Assuntos
Copépodes , Animais , Aptidão Genética , Concentração de Íons de Hidrogênio , Água do Mar , Fenótipo
7.
J Mol Evol ; 91(3): 311-324, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36752825

RESUMO

Following the completion of an adaptive evolution experiment, fitness evaluations are routinely conducted to assess the magnitude of adaptation. In doing so, proper consideration should be given when determining the appropriate methods as trade-offs may exist between accuracy and throughput. Here, we present three instances in which small changes in the framework or execution of fitness evaluations significantly impacted the outcomes. The first case illustrates that discrepancies in fitness conclusions can arise depending on the approach to evaluating fitness, the culture vessel used, and the sampling method. The second case reveals that variations in environmental conditions can occur associated with culture vessel material. Specifically, these subtle changes can greatly affect microbial physiology leading to changes in the culture pH and distorting fitness measurements. Finally, the last case reports that heterogeneity in CFU formation time can result in inaccurate fitness conclusions. Based on each case, considerations and recommendations are presented for future adaptive evolution experiments.


Assuntos
Aclimatação , Adaptação Fisiológica , Adaptação Fisiológica/genética , Aptidão Genética
8.
Environ Pollut ; 312: 120071, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36055456

RESUMO

Environmental nanoplastics (NPs) can accumulate in soils, posing a potential risk to soil ecosystems. However, the ecotoxicity of NPs for soil organisms has received little research attention. This study investigated whether NP exposure in soil leads to reproductive decline in the soil nematode Caenorhabditis elegans and sought to determine the mechanisms by which it may occur. Wild-type N2 C. elegans L1 larvae were exposed to various concentrations of nano-sized polystyrene (100 nm) in soil (0, 1, 10, 100, and 1000 mg/kg dry weight) for 96 h. We show that nano-sized polystyrene (100 nm) labeled with red fluorescence significantly accumulated in the intestine of C. elegans in a dose-dependent fashion via soil exposure (8%-47% increase). In addition, NP soil exposure led to 7%-33% decline in the number of eggs in utero and 2.6%-4.4% decline in the egg hatching percentage. We also find that the number of germ cell corpses (31%-55% increase) and the mRNA levels of germline apoptosis marker gene ced-3 (14%-31% increase) were significantly higher with greater NP soil exposure (10, 100, and 1000 mg/kg), while intracellular ATP levels were significantly reduced. Finally, the DEBtox model, which is based on the dynamic energy budget theory, was applied to show that the increased reproductive costs for C. elegans caused by NPs in soil are associated with energy depletion and reproductive decline. The threshold value (4.18 × 10-6 mg/kg) for the energy budget also highlighted the potential high reproductive risk posed by NPs in terrestrial ecosystems. Our study provides new insights into how soil organisms interact with NPs in soil ecosystems.


Assuntos
Caenorhabditis elegans , Microplásticos , Trifosfato de Adenosina , Animais , Caenorhabditis elegans/genética , Ecossistema , Aptidão Genética , Poliestirenos , RNA Mensageiro , Solo
9.
mBio ; 13(5): e0093722, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-35972144

RESUMO

The repeated emergence of antimalarial drug resistance in Plasmodium falciparum, including to the current frontline antimalarial artemisinin, is a perennial problem for malaria control. Next-generation sequencing has greatly accelerated the identification of polymorphisms in resistance-associated genes but has also highlighted the need for more sensitive and accurate laboratory tools to profile current and future antimalarials and to quantify the impact of drug resistance acquisition on parasite fitness. The interplay of fitness and drug response is of fundamental importance in understanding why particular genetic backgrounds are better at driving the evolution of drug resistance in natural populations, but the impact of parasite fitness landscapes on the epidemiology of drug resistance has typically been laborious to accurately quantify in the lab, with assays being limited in accuracy and throughput. Here we present a scalable method to profile fitness and drug response of genetically distinct P. falciparum strains with well-described sensitivities to several antimalarials. We leverage CRISPR/Cas9 genome-editing and barcode sequencing to track unique barcodes integrated into a nonessential gene (pfrh3). We validate this approach in multiplex competitive growth assays of three strains with distinct geographical origins. Furthermore, we demonstrate that this method can be a powerful approach for tracking artemisinin response as it can identify an artemisinin resistant strain within a mix of multiple parasite lines, suggesting an approach for scaling the laborious ring-stage survival assay across libraries of barcoded parasite lines. Overall, we present a novel high-throughput method for multiplexed competitive growth assays to evaluate parasite fitness and drug response. IMPORTANCE The complex interplay between antimalarial resistance and parasite fitness has important implications for understanding the development and spread of drug resistance alleles and the impact of genetic background on transmission. One limitation with current methodologies to measure parasite fitness is the ability to scale this beyond simple head-to-head competition experiments between a wildtype control line and test line, with a need for a scalable approach that allows tracking of parasite growth in complex mixtures. In our study, we have used CRISPR editing to insert unique DNA barcodes into a safe-harbor genomic locus to tag multiple parasite strains and use next-generation sequencing to read out strain dynamics. We observe inherent fitness differences between the strains, as well as sensitive modulation of responses to challenge with clinically relevant antimalarials, including artemisinin.


Assuntos
Antimaláricos , Artemisininas , Plasmodium falciparum , Antimaláricos/farmacologia , Artemisininas/farmacologia , Misturas Complexas , Resistência a Medicamentos/genética , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/genética , Aptidão Genética
10.
Parasit Vectors ; 15(1): 252, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35818078

RESUMO

BACKGROUND: Rhipicephalus microplus is the vector of deadly cattle pathogens, especially Babesia spp., for which a recombinant vaccine is not available. Therefore, disease control depends on tick vector control. However, R. microplus populations worldwide have developed resistance to available acaricides, prompting the search for novel acaricide targets. G protein-coupled receptors (GPCRs) are involved in the regulation of many physiological processes and have been suggested as druggable targets for the control of arthropod vectors. Arthropod-specific signaling systems of small neuropeptides are being investigated for this purpose. The pyrokinin receptor (PKR) is a GPCR previously characterized in ticks. Myotropic activity of pyrokinins in feeding-related tissues of Rhipicephalus sanguineus and Ixodes scapularis was recently reported. METHODS: The R. microplus pyrokinin receptor (Rhimi-PKR) was silenced through RNA interference (RNAi) in female ticks. To optimize RNAi, a dual-luciferase assay was applied to determine the silencing efficiency of two Rhimi-PKR double-stranded RNAs (dsRNA) prior to injecting dsRNA in ticks to be placed on cattle. Phenotypic variables of female ticks obtained at the endpoint of the RNAi experiment were compared to those of control female ticks (non-injected and beta-lactamase dsRNA-injected). Rhimi-PKR silencing was verified by quantitative reverse-transcriptase PCR in whole females and dissected tissues. RESULTS: The Rhimi-PKR transcript was expressed in all developmental stages. Rhimi-PKR silencing was confirmed in whole ticks 4 days after injection, and in the tick carcass, ovary and synganglion 6 days after injection. Rhimi-PKR silencing was associated with an increased mortality and decreased weight of both surviving females and egg masses (P < 0.05). Delays in repletion, pre-oviposition and incubation periods were observed (P < 0.05). CONCLUSIONS: Rhimi-PKR silencing negatively affected female reproductive fitness. The PKR appears to be directly or indirectly associated with the regulation of female feeding and/or reproductive output in R. microplus. Antagonists of the pyrokinin signaling system could be explored for tick control.


Assuntos
Acaricidas , Doenças dos Bovinos , Neuropeptídeos , Rhipicephalus , Infestações por Carrapato , Acaricidas/farmacologia , Animais , Bovinos , Feminino , Aptidão Genética , RNA de Cadeia Dupla , Rhipicephalus/fisiologia , Infestações por Carrapato/veterinária
11.
PLoS Comput Biol ; 18(1): e1009796, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35045068

RESUMO

The aim of this paper is two-fold. First, we propose a new computational method to investigate the particularities of evolution. Second, we apply this method to a model of gene regulatory networks (GRNs) and explore the evolution of mutational robustness and bistability. Living systems have developed their functions through evolutionary processes. To understand the particularities of this process theoretically, evolutionary simulation (ES) alone is insufficient because the outcomes of ES depend on evolutionary pathways. We need a reference system for comparison. An appropriate reference system for this purpose is an ensemble of the randomly sampled genotypes. However, generating high-fitness genotypes by simple random sampling is difficult because such genotypes are rare. In this study, we used the multicanonical Monte Carlo method developed in statistical physics to construct a reference ensemble of GRNs and compared it with the outcomes of ES. We obtained the following results. First, mutational robustness was significantly higher in ES than in the reference ensemble at the same fitness level. Second, the emergence of a new phenotype, bistability, was delayed in evolution. Third, the bistable group of GRNs contains many mutationally fragile GRNs compared with those in the non-bistable group. This suggests that the delayed emergence of bistability is a consequence of the mutation-selection mechanism.


Assuntos
Evolução Molecular , Aptidão Genética/genética , Modelos Genéticos , Mutação/genética , Fenótipo , Biologia Computacional , Simulação por Computador , Redes Reguladoras de Genes/genética , Método de Monte Carlo , Seleção Genética/genética
12.
Genome Biol Evol ; 14(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-35038732

RESUMO

Predicting fitness in natural populations is a major challenge in biology. It may be possible to leverage fast-accumulating genomic data sets to infer the fitness effects of mutant alleles, allowing evolutionary questions to be addressed in any organism. In this paper, we investigate the utility of one such tool, called PROVEAN. This program compares a query sequence with existing data to provide an alignment-based score for any protein variant, with scores categorized as neutral or deleterious based on a pre-set threshold. PROVEAN has been used widely in evolutionary studies, for example, to estimate mutation load in natural populations, but has not been formally tested as a predictor of aggregate mutational effects on fitness. Using three large published data sets on the genome sequences of laboratory mutation accumulation lines, we assessed how well PROVEAN predicted the actual fitness patterns observed, relative to other metrics. In most cases, we find that a simple count of the total number of mutant proteins is a better predictor of fitness than the number of proteins with variants scored as deleterious by PROVEAN. We also find that the sum of all mutant protein scores explains variation in fitness better than the number of mutant proteins in one of the data sets. We discuss the implications of these results for studies of populations in the wild.


Assuntos
Aptidão Genética , Acúmulo de Mutações , Alelos , Evolução Biológica , Mutação
13.
Pest Manag Sci ; 78(3): 1279-1286, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34854222

RESUMO

BACKGROUND: Spodoptera frugiperda (J.E. Smith) is a difficult pest to manage mainly because of its resistance to insecticides and Bt proteins. We evaluated fitness costs of S. frugiperda resistant strains to diamide insecticides with different genetic backgrounds aiming to highlight the importance of using isogenic strains. We established a near-isogenic strain of S. frugiperda resistant to diamides (Iso-RR), using a chlorantraniliprole resistant strain (RR) selected from a field-collected population and a susceptible reference strain (SS). Fitness costs were assayed using strains with close-related genetic backgrounds (Iso-RR and SS) and strains with distant-related genetic backgrounds (RR and SS). RESULTS: No fitness cost associated with chlorantraniliprole resistance in S. frugiperda was observed using the Iso-RR strain, based on life history traits. The only parameter that differs between Iso-RR and SS strains was the mean length of a generation (T), whereas the Iso-RR strain presented T = 35.8 and SS strain showed T = 34.6. On the other hand, a significant fitness cost was detected using the RR strain. All population growth parameters differ between RR and SS strains. Based on the intrinsic rate of population increase (rm ) parameter, the relative fitness estimated was 1.02 for the Iso-RR strain and 0.64 for the RR strain. CONCLUSION: The genetic background of the resistant strains alters fitness cost outcomes. The RR strain showed fitness costs associated with resistance, but the Iso-RR did not. Our work supports the decision-making process of resistance management programs and adds to the growing body of research that enlightens the importance of strain genetics in fitness cost experiments.


Assuntos
Aptidão Genética , Resistência a Inseticidas , Inseticidas , Spodoptera , Animais , Patrimônio Genético , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Larva , Spodoptera/genética , ortoaminobenzoatos
14.
PLoS Biol ; 19(10): e3001225, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34644303

RESUMO

Plasmids play an important role in bacterial genome evolution by transferring genes between lineages. Fitness costs associated with plasmid carriage are expected to be a barrier to gene exchange, but the causes of plasmid fitness costs are poorly understood. Single compensatory mutations are often sufficient to completely ameliorate plasmid fitness costs, suggesting that such costs are caused by specific genetic conflicts rather than generic properties of plasmids, such as their size, metabolic burden, or gene expression level. By combining the results of experimental evolution with genetics and transcriptomics, we show here that fitness costs of 2 divergent large plasmids in Pseudomonas fluorescens are caused by inducing maladaptive expression of a chromosomal tailocin toxin operon. Mutations in single genes unrelated to the toxin operon, and located on either the chromosome or the plasmid, ameliorated the disruption associated with plasmid carriage. We identify one of these compensatory loci, the chromosomal gene PFLU4242, as the key mediator of the fitness costs of both plasmids, with the other compensatory loci either reducing expression of this gene or mitigating its deleterious effects by up-regulating a putative plasmid-borne ParAB operon. The chromosomal mobile genetic element Tn6291, which uses plasmids for transmission, remained up-regulated even in compensated strains, suggesting that mobile genetic elements communicate through pathways independent of general physiological disruption. Plasmid fitness costs caused by specific genetic conflicts are unlikely to act as a long-term barrier to horizontal gene transfer (HGT) due to their propensity for amelioration by single compensatory mutations, helping to explain why plasmids are so common in bacterial genomes.


Assuntos
Aptidão Genética , Mutação/genética , Plasmídeos/genética , Cromossomos Bacterianos/genética , Conjugação Genética , Evolução Molecular , Regulação Bacteriana da Expressão Gênica , Modelos Biológicos , Pseudomonas fluorescens/genética , Transcrição Gênica , Regulação para Cima/genética
15.
Genes (Basel) ; 12(9)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34573350

RESUMO

In newborns, severe congenital heart defects are rarer than mild ones. This epidemiological relationship between heart defect severity and incidence lacks explanation. Here, an analysis of ~10,000 Nkx2-5+/- mice from two inbred strain crosses illustrates the fundamental role of epistasis. Modifier genes raise or lower the risk of specific defects via pairwise (G×GNkx) and higher-order (G×G×GNkx) interactions with Nkx2-5. Their effect sizes correlate with the severity of a defect. The risk loci for mild, atrial septal defects exert predominantly small G×GNkx effects, while the loci for severe, atrioventricular septal defects exert large G×GNkx and G×G×GNkx effects. The loci for moderately severe ventricular septal defects have intermediate effects. Interestingly, G×G×GNkx effects are three times more likely to suppress risk when the genotypes at the first two loci are from the same rather than different parental inbred strains. This suggests the genetic coadaptation of interacting G×G×GNkx loci, a phenomenon that Dobzhansky first described in Drosophila. Thus, epistasis plays dual roles in the pathogenesis of congenital heart disease and the robustness of cardiac development. The empirical results suggest a relationship between the fitness cost and genetic architecture of a disease phenotype and a means for phenotypic robustness to have evolved.


Assuntos
Aptidão Genética , Comunicação Interatrial/genética , Comunicação Interventricular/genética , Defeitos dos Septos Cardíacos/genética , Proteína Homeobox Nkx-2.5/genética , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Feminino , Loci Gênicos , Defeitos dos Septos Cardíacos/diagnóstico , Comunicação Interatrial/diagnóstico , Comunicação Interventricular/diagnóstico , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Índice de Gravidade de Doença
16.
Int J Mol Sci ; 22(9)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068540

RESUMO

Spodopteraexigua, a multifeeding insect pest, has developed a high level of resistance to chlorantraniliprole, which is a benzoylurea insecticide that targets the ryanodine receptors (RyRs). Herein, the resistant strain (SE-Sel) and sensitive strain (SE-Sus) were obtained by bidirectional screening for six generations. The potential oviposited eggs and oviposition rate of the SE-Sel strain were dramatically lower than those of the SE-Sus strain; on the contrary, the weights of prepupae and preadult were significantly increased. As a post-mating response, the higher number of non-oviposited eggs in the SE-Sel strain was caused by a lower mating rate. In addition, the expression levels of vitellogenin (SeVg) and its receptor (SeVgR) in the SE-Sel strain were consistently lower than those in the SE-Sus strain. An RyRI4743M mutation, contributing to the resistance to chlorantraniliprole, was located in the S3 transmembrane segments and might have affected the release of calcium ions; it led to the upregulated expression of the neuropeptide SeNPF and its receptor SeNPFR, and the mating and oviposition rate were significantly recovered when the SeNPF was knocked down though RNA interference (RNAi) in the male adult of the SE-Sel strain. Moreover, the expression of the juvenile hormone-binding proteins SeJHBWDS3 and SeJHBAN in the male adult of the SE-Sel strain was significantly decreased, which proved the existence of a fitness cost from another angle. Therefore, these results indicate that the fitness cost accompanied by chlorantraniliprole resistance in S. exigua may be related to the decrease in mating desire due to SeNPF overexpression.


Assuntos
Proteínas de Insetos/genética , Resistência a Inseticidas/genética , Spodoptera/genética , ortoaminobenzoatos/farmacologia , Animais , Proteínas de Transporte/genética , Resistência à Doença/efeitos dos fármacos , Resistência à Doença/genética , Proteínas do Ovo/genética , Aptidão Genética/genética , Inseticidas/farmacologia , Mutação/genética , Neuropeptídeos/genética , Interferência de RNA , Receptores de Superfície Celular/genética , Receptores de Neuropeptídeos/genética , Spodoptera/efeitos dos fármacos , Vitelogeninas/genética , ortoaminobenzoatos/efeitos adversos
17.
mSphere ; 6(3): e0035621, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34160235

RESUMO

The reversibility of antibiotic resistance is theoretically attractive due to the prospect of restoring the clinical potency of antibiotics. It is important to find out the factors that affect the reversibility of antibiotic resistance. Here, an mcr-1-positive multidrug-resistant (MDR) environmental Escherichia coli isolate was successively passaged under four antibiotic-free culture conditions. The relative abundances of multiple antibiotic resistance genes (ARGs) kept decreasing during the successive passages. The linear correlations between abundances of ARGs on the same MDR plasmid reflected that the decay of antibiotic resistance during the passage was mainly due to the elimination of the MDR plasmid (pMCR_W5-6). Colistin-susceptible strains were isolated at the end of the passage. The whole-genome sequencing of two susceptible isolates detected the elimination of the MDR plasmid and deletion of the mcr-1 gene. Deletions of DNA fragments from chromosome and plasmid were closely related to a variety of insertion sequences (ISs). The results of coculture of resistant and susceptible strains at different antibiotic concentrations indicated that the high fitness cost led to the poor stability of mobile ARGs. Strict control of the use of antibiotics can at least reverse the severe antibiotic resistance caused by mobile ARGs of high fitness cost. IMPORTANCE The dissemination of bacterial antibiotic resistance is a serious threat to human health. The development of new antibiotics faces both economic and technological challenges. The reversibility of antibiotic resistance has become an important issue causing wide concern due to the prospect of restoring the clinical potency of antibiotics. Our study suggests that the high mobility of ARGs of high fitness cost may just reflect their poor stability. Therefore, strict control of the use of antibiotics can at least reverse the severe antibiotic resistance caused by mobile ARGs of high fitness cost. This study brings hope for the possibility of curbing the dissemination of antibiotic resistance.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Proteínas de Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Aptidão Genética , Plasmídeos , Sequenciamento Completo do Genoma
18.
Malar J ; 20(1): 259, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34107949

RESUMO

BACKGROUND: Despite increasing documentation of insecticide resistance in malaria vectors against public health insecticides in sub-Saharan Africa, there is a paucity of information on the potential fitness costs of pyrethroid resistance in malaria vectors, which is important in improving the current resistant management strategies. This study aimed to assess the fitness cost effects of insecticide resistance on the development and survival of immature Anopheles gambiae from western Kenya. METHODS: Two-hour old, first instar larvae (L1) were introduced and raised in basins containing soil and rainwater in a semi-field set-up. Each day the number of surviving individuals per larval stage was counted and their stage of development were recorded until they emerged as adults. The larval life-history trait parameters measured include mean larval development time, daily survival and pupal emergence. Pyrethroid-resistant colony of An. gambiae sensu stricto and susceptible colony originating from the same site and with the same genetic background were used. Kisumu laboratory susceptible colony was used as a reference. RESULTS: The resistant colony had a significantly longer larval development time through the developmental stages than the susceptible colony. The resistant colony took an average of 2 days longer to develop from first instar (L1) to fourth instar (L4) (8.8 ± 0.2 days) compared to the susceptible colony (6.6 ± 0.2 days). The development time from first instar to pupa formation was significantly longer by 3 days in the resistant colony (10.28 ± 0.3 days) than in susceptible colony (7.5 ± 0.2 days). The time from egg hatching to adult emergence was significantly longer for the resistant colony (12.1 ± 0.3 days) than the susceptible colony (9.6 ± 0.2 days). The pupation rate (80%; 95% (CI: 77.5-83.6) vs 83.5%; 95% (CI: 80.6-86.3)) and adult emergence rate (86.3% vs 92.8%) did not differ between the resistant and susceptible colonies, respectively. The sex ratio of the females to males for the resistant (1:1.2) and susceptible colonies (1:1.07) was significantly different. CONCLUSION: The study showed that pyrethroid resistance in An. gambiae had a fitness cost on their pre-imaginal development time and survival. Insecticide resistance delayed the development and reduced the survivorship of An. gambiae larvae. The study findings are important in understanding the fitness cost of insecticide resistance vectors that could contribute to shaping resistant management strategies.


Assuntos
Anopheles/fisiologia , Aptidão Genética , Resistência a Inseticidas , Animais , Anopheles/genética , Anopheles/crescimento & desenvolvimento , Inseticidas/farmacologia , Quênia , Larva/genética , Larva/crescimento & desenvolvimento , Larva/fisiologia , Pupa/genética , Pupa/crescimento & desenvolvimento , Pupa/fisiologia
19.
Evolution ; 75(10): 2509-2523, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33991339

RESUMO

Parasites can mediate host fitness both directly, via effects on survival and reproduction, or indirectly by inducing host immune defense with costly side-effects. The evolution of immune defense is determined by a complex interplay of costs and benefits of parasite infection and immune response, all of which may differ for male and female hosts in sexual lineages. Here, we examine fitness costs associated with an inducible immune defense in a fish-cestode host-parasite system. Cestode infection induces peritoneal fibrosis in threespine stickleback (Gasterosteus aculeatus), constraining cestode growth and sometimes encasing and killing the parasite. Surveying two wild populations of stickleback, we confirm that the presence of fibrosis scar tissue is associated with reduced parasite burden in both male and female fish. However, fibrotic fish had lower foraging success and reproductive fitness (reduced female egg production and male nesting success), indicating strong costs of the lingering immunopathology. Consistent with substantial sexually concordant fitness effects of immune response, we find alignment of multivariate selection across the sexes despite sexual antagonism over morphological shape. Although both sexes experienced costs of fibrosis, the net impacts are unequal because in the two study populations females had higher cestode exposure. To evaluate whether this difference in risk should drive sex-specific immune strategies, we analyze a quantitative genetic model of host immune response to a trophically transmitted parasite. The model and empirical data illustrate how shared costs and benefits of immune response lead to shared evolutionary interests of male and female hosts, despite unequal infection risks across the sexes.


Assuntos
Cestoides , Infecções por Cestoides , Doenças dos Peixes , Smegmamorpha , Animais , Infecções por Cestoides/veterinária , Feminino , Aptidão Genética , Interações Hospedeiro-Parasita , Imunidade , Masculino
20.
Mol Biol Evol ; 38(8): 3220-3234, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-33830249

RESUMO

Antibiotic resistance often generates defects in bacterial growth called fitness cost. Understanding the causes of this cost is of paramount importance, as it is one of the main determinants of the prevalence of resistances upon reducing antibiotics use. Here we show that the fitness costs of antibiotic resistance mutations that affect transcription and translation in Escherichia coli strongly correlate with DNA breaks, which are generated via transcription-translation uncoupling, increased formation of RNA-DNA hybrids (R-loops), and elevated replication-transcription conflicts. We also demonstrated that the mechanisms generating DNA breaks are repeatedly targeted by compensatory evolution, and that DNA breaks and the cost of resistance can be increased by targeting the RNase HI, which specifically degrades R-loops. We further show that the DNA damage and thus the fitness cost caused by lack of RNase HI function drive resistant clones to extinction in populations with high initial frequency of resistance, both in laboratory conditions and in a mouse model of gut colonization. Thus, RNase HI provides a target specific against resistant bacteria, which we validate using a repurposed drug. In summary, we revealed key mechanisms underlying the fitness cost of antibiotic resistance mutations that can be exploited to specifically eliminate resistant bacteria.


Assuntos
Quebras de DNA , Farmacorresistência Bacteriana/genética , Aptidão Genética , Ribonuclease H/genética , Animais , Evolução Biológica , Replicação do DNA , Escherichia coli , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA